
Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark, May 18-22, 2009

Measuring the Use of Sound in Everyday Software

Benjamin K. Davison and Bruce N. Walker

Georgia Institute of Technology
Sonification Laboratory

654 Cherry St.
Atlanta, GA, USA 30332-0170

davison@gatech.edu, bruce.walker@psych.gatech.edu

ABSTRACT

Members of the ICAD community might contend that auditory
interfaces and even just well-designed sound in computer
interfaces could be used more often than is currently the case.
However, it is not entirely clear where, when, and how sound is
actually being employed in everyday software. We discuss the
development of a long-term research project aimed at
identifying and categorizing sound use in software. Our mixed-
methods approach explores software artifacts from three
perspectives: detailed program behavior, source code word
count of audio terms, and audio infrastructure. These
complementary approaches could provide a deeper
understanding of sound use today and, we hope, lead to
predicting, guiding, and improving the future trajectory of its
use.

1. INTRODUCTION

What is the benefit of audio in everyday computing? We at
ICAD demonstrate answers to this question on an annual basis.
We show the performance of earcons versus auditory icons and
the utility of sound in a visually attentive situation. We study
how sound can improve desktop and mobile computer use, and
how sonification can enhance data exploration and analysis.
These projects suggest a view that sound should be present in
computing when it is useful and appropriate.

However, there does not seem to be widespread use of
sound in everyday computing.1 There are certainly some alert
sounds, and a ring tone still indicates a phone call, but most
applications appear to have few if any sounds. The task of
increasing audio interaction begs for a characterization of sound
use now. This can highlight difference between use domains
and act as a starting point for measuring changes in the
characterization data over time.

2. HOW CAN WE INCREASE SOUND USE?

The usefulness of sound is a tacit and fundamental assumption
in this auditory display community. However, programmers
don't appear to use audio very often [2], and their audio
concepts tend to be musical instead of in auditory display or
psychoacoustic terminology (“piano” versus “earcon” versus
“complex sound”) [3]. There has been some effort to reduce
the cost of building sound into software [4,5], including an
explicit attempt to reduce the cost while maintaining benefits
[5]. Toolkit and API2 improvements provide developer-
oriented solutions to the audio use problem. If program authors

1Some domains of use have frequent auditory interaction. For example,
blind computer users have tools such as JAWS [1] that provide a
different interactive experience than sighted users have. Identifying
what the specific differences are motivate this proposed study. Why
those difference exist is an example of how the data can motivate new
research.

have easier ways to integrate audio, they may be more likely to
use sound in their applications.

Current academic and industry software engineering
practice often involves end-user input, providing a way to tailor
appropriate auditory interaction to particular scenarios. Even
so, the current approach depends heavily on technology
changing (hopefully improving) some situation. We are
missing an opportunity to understand the bigger picture and
broadly relate auditory technology to user groups.

In exploring the development of the modern bicycle, Wiebe
Bijker highlights the two aspects of a common representation of
the history of technology [6]. First, the concept of a linear
development model obscures the rich interrelationships between
invention and very gradual adaptation of previous things into
new inventions. These details highlight how inventors
synthesize previous and parallel inventions into their own work.
Second, there is little discussion of the failures along the way.
In particular, temporarily popular inventions can help describe
what is useful to particular user groups at the time. It is society
that creates successful technology, not technology shaping
society [6]. Certainly a new technology can change the way
people live in the world. But the technology is first adopted
because users perceive it to be useful in the existing world.

Bijker demonstrates how the high-wheeled “Ordinary”
bicycle provided a way for young, wealthy Europeans to engage
in physically risky and public behavior [6]. The solid rubber
wheels and a springless frame of the “boneshaker” was an
uncomfortable experience. While larger wheels reduced the
shakiness, it made mounting and dismounting the bicycle much
more difficult. Cautious and unathletic people could not use the
ordinary, but it was common among daring young, wealthy men
in parts of Europe3. The safety and comfort concerns of other
potential users motivated further bicycle development which led
to the air tire, improved steering and braking, and smaller
wheels. The resulting “Safety” bicycle of the early 20 th century
closely resembles the structure of what passes as a normal
bicycle today. From a post-hoc perspective, the high-wheeled
Ordinary appears to be a detour on the development of the
bicycle; from a social perspective, it satisfied different situation
requirements. The Social Construction of Technology [6]
drives the engine of innovation.

In computing research, there has been recent concern over
the scope of understanding domains and deviating too far from
the practice of computing. Dourish discusses user domain
exploration and challenges subsequent “implications for
design” [8]. He suggests a decoupling of the domain
characterization (research in its own right) from programs that
are developed with the characterization in mind. Otherwise, the

2Application Programmer Interface. User interface toolkits provide
APIs to make it easy to create robust software interface components in
fewer lines of software code. See [5].
3Understanding non-users can help define the technology as much as
understanding the users. See [7] for more on non-users and technology
regulation.

ICAD09-1

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark, May 18-22, 2009

characterization may only be useful for the project to justify
itself.

Bell and Dourish explored the trajectory of ubiquitous
computing, questioning whether fundamental visions of an
ubicomp would will be fulfilled. They advocate studying the
ubicomp that can be found in a couple of situations today [9].
What could tell the audio community if we are on the right
track? A characterization of sound use today could provide a
picture of where practice is and a way for domain and temporal
comparisons.

In order to make audio-enhanced technologies that “fit”, we
suggest starting with the characterization of software sound use
today. Once there is a better understanding of the social
groups, users, technology, and infrastructure it is appropriate to
provide an intervention that can best support the entire socio-
technical system.

2.1. Use Domains

It appears likely that the use of sound depends somewhat on the
domain. The identification of domains is largely guesswork at
this point. The literature, discourse analysis (per Bijker [6]),
and user studies will further define the important domains.
Instead of determining the perfect domains, this task focuses on
the sound use in a handful of domains and compares inter-
domain results. Through the lens of sound types we can shape
our understanding of sound usage in each environmental
situation. The domains are broadly defined as individual
recreation at home, team computer games, and a white collar
office setting.

An office setting is defined as a space with a people who do
most of their work with their office computer in a space that is
their office or cubicle. The focus will be on which programs
large portions of the population use on a regular basis (e.g., a
time card system or a mortgage data entry suite). Team gaming
situations will focus on the tools that people use to play team
games, including the game itself and supporting tools such as
communication software. While gaming is typically an at-home
event in the United States, it is conducted in social areas in
other areas such as Korea [9]. The social aspects of interaction
will not be explored in this part of the project, but the source of
the data gathering is an important note on the generalizability of
findings. Individual recreation at home is increasingly digital
and online. This user group is broadly defined as "on the
computer" but not involved in a team game or a work situation.
This includes individual games such as solitaire, productivity
systems such as email or a finance program, and Internet
browsing activities such as looking up the news or the latest
YouTube videos.

3. CHARACTERIZING SOUND USE TODAY

Exploring software artifacts helps describe both the programmer
and the end user. By looking at a program and its affordances,
we can discover what the programmer intended to create. This
analysis can be done with a running program or an examination
of the source code. In addition, the infrastructure that the end
user has in place shapes the when and where sounds can be
played.

3.1. Detailed Software Behavior

This section explores the functional use of sound in software.
The sounds used in a program can be categorized by the
auditory design approach, the function of the sound, and the the
level of control the user has in selecting the sounds used. There
are a few major types of sounds often mentioned in the ICAD

literature. Auditory icons are natural-sounding representations
of objects. Gaver introduced auditory icons [10] and explored
their use in the SonicFinder auditory interface [11]. Earcons
capture less about the object itself but more about its relation to
other elements [12], such as hierarchical position. Brewster
[13] determined that earcons could effectively convey
information to the end user. Speech output is a common
approach to auditory user interfaces. Spearcons are a non-
speech audio representation of a spoken phrase [14,15].
Identifiable and small, a Spearcon is like a fingerprint of the
original speech phrase. Spearcons have been shown to be useful
as enhancements to menus, and as such can also be followed in
a menu by the uncompressed text-to-speech phrase if the user
might need access to the full text message. Soundscapes are
auditory scenes. They can be natural, such as the sound in a
park, or synthesized. The purpose of a soundscape can be
aesthetic or informational. TAPESTREA [16] and SoundScape
[17] are two examples of tools designed specifically for
building soundscapes.

The sound can be an alert, ambient, interactive, or end-
product. Alerts are designed to gain attention about a particular
event. Emergency sirens, system warnings, and typical email
notifications are all alerts. Alert design tends to match sound
intensity with the importance of the event; louder sounds mean
bigger warnings. Ambient information can be put into the
background of the users mind. As the information changes, the
user may be subtly alerted to unusual patterns [17]. Ambient
audio approaches try to balance the utility of alerts with a
moderation of sound distractions. Interactive audio involves
hearing sounds based on the users direct activity. This mimics
the role of sound with non-software objects. For example, when
a person rotates their wrist while holding the handle of a
maraca, the ball of the maraca visibly moves, and a sound of
objects on the inside of the maraca can also be heard. The
sound is a product of the interaction in a direct manner. Typical
alerts don't match this approach since they are more logical, a
warning that something is a problem. Interactive sound in
computer systems could involve auditory menus [18] or
interface widgets in general [4,5]. End-product audio is when
the audio playback and recording is a system goal. For example,
an MP3 player or a dictation system both rely on audio as a
vital part of their use.

Audio customization effects how the user receives the
designed sounds. A selection of the sounds available allows the
user to self-design sounds to their own situation and
preferences, much like a 'skin' for graphical interfaces. Toggles
for sound types to play also allow customization. The volume
level suggests different interpretations of sound. If some sounds
or other programs are inappropriate, these may cause the user to
change the volume, in effect dimming the auditory interface. If
the volume is completely off then the auditory interface has no
influence.

Property Category

Design Auditory icon, earcon, speech, spearcon,
soundscape

Function Alert, ambient, interactive, end-user

Custom Customizability, volume

Table 1: Audio use properties to be measured.

The auditory design, function, and customizability broadly
define a system's use of audio. Adium instant messenger for
Mac OS X, for example, has alert earcons that are customizable.
One measure that is perhaps missing from this study is the
necessity of audio - can work in an application be easily done

ICAD09-2

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark, May 18-22, 2009

without the help of sound? It is possible that future studies can
look at the software identified in this study and correlate
patterns of sound types used and the necessity in the system.

A list of programs used in each environment will then be
inspected from an end user perspective. The programs will be
evaluated to determine the system sounds. For example, a
multiplayer interactive world might have interactions that use
earcons and an ambient soundscape that reveals the
surroundings. A finance program may have no sound at all. The
list of programs will not be completely representative, and will
be shaped by cost considerations. However, it can demonstrate
patterns of use within and between environments. The
environments themselves are subject to division, but are kept
broad at this point to help reveal the appropriate separations.
Another layer of environment is the user's ability to interact, i.e.
the visually impaired may use computer programs differently
based on accessibility issues with a graphically dominated
software environment.

3.2. Source Code

Program code is the most concrete type of information in this
project. The end result of this part will be to have a code
grabbing apparatus, a code searching tool, and sample data
gathered from searches. Since this section requires access to
source code, the projects we select will all be accessible to this
project with permission or through an open source license.
Fortunately, large repositories of open source projects already
exist (e.g., SourceForge); we intend to select one or more of
these resources to act as the population of programs for our
samples.

Each program selected will have its source downloaded.
There are syntactic and practice differences between
programming languages. However, in programs with audio,
basic words such as "sound" or "audio" are probably embedded
in comments, variables, or function names. Therefore, we will
index every line of code and make the text searchable, most
likely in a database. The database schema is simple: the most
important field is a line of code from the source. There will also
be fields to identify the table index of the next and previous
lines; this isn't necessary for a word count but is useful in
reconstructing the code to search for relevancy and
dependencies. A project identifier, file identifier, and relative
path distinguish all of the parts of the program. Binary
resources will not be stored, so a complete rebuild and run of
the code may not be possible, but a line of code can certainly be
visualized in the context of the other parts of the file and
project. The database will not have functional references to
other parts of the code nor attempt to have a semantic
understanding of what the code is doing. Due to the nature of
storage, this work will exclude languages that don't have a
textual representation; for example, languages that are
completely graphical. Since this work focuses on current
practices, it will analyze the current release of a program and
avoid old versions. While old code certainly exists in long-term
projects, the project itself is a representation of what
programmers value as important parts of their code today.

In addition to general searches, there will be subcategories
of programs. An "auditory tools" category will inform the term
search parameters, since these programs certainly have the use
of audio in their code.

The search tool itself will be a lightweight front end to the
database. It will provide a search mechanism that returns some
statistics on the term usage and access to the results in context.
It will have expressive flexibility through some sort of regular
expression scheme.

The results are intended to be as basic as possible; it will
allow for statements such as "4 out of the 10 projects selected
used the term 'midi'". As part of a sampling approach, such

basic facts can greatly shape our understanding of the state of
audio. For example, the use of auditory terms in a program
suggests that it uses sound. The searches can reveal if the
programmer is relying on a third-party library or handwritten
code. This in turn suggests the level of effort a programmer put
into implementing sound. Repeated attempts by several
programs could suggest a role for libraries (as proposed by
[4,5]). In addition, this data can be mined for comparative data
on the use of other interface approaches such as GUIs and
tactile displays. The categories of the projects in the source
provide an opportunity to compare the programmer-perceived
utility of sound in different domains. This in turn can later be
compared with the actual use in the domain.

This snapshot of software code can also be utilized in the
future. More than the other techniques in this project, the data
from this method have many avenues of future verification and
interpretation. For example, a replication of this study in five
years may find changes in certain activities. If new search terms
are discovered at that time, the five-year-old data can be
examined using the new search. The data source is so flexible
that it could be used for work completely unrelated to auditory
interface research.

Literature on this subject tends to focus more on comments
and their relationship to the code and bugs [such as in 19]. A
simple term/word search is appropriate for our present
purposes. Its simplicity also reduces the chance of error
possible in automated analysis. However, if there are patterns of
coding (not necessarily software design patterns as described in
[20]) found in the searches, automated analysis may deliver an
easier way to view auditory code sections in future studies.

Perhaps the lack of published interest in the subject has to
do with the simplicity of the analysis; a searchable database of
lines of code is not a particularly creative database schema or
analysis technique. The difficult part of this problem is
gathering the code and putting it into the system in a timely
matter. The analysis can be immediate or delayed for several
years, but the data have to all be gathered in a short time frame
to represent software in a certain time. Since the structure of
program source code depends on the language, programming
culture, and whims of the developers, identifying relevant parts
to insert into the project will have to be done on a project-by-
project basis. This will ideally be a shared, distributed effort,
involving many in ICAD and the related communities.

3.3. Infrastructure

By understanding the infrastructure, we can further understand
the user's constraints in using audio with software. If the
speakers are not plugged in, then no amount of effort on the
programmer's end will deliver sound to the end user. This
approach will ask users about their practices using computers
on the hardware and operating system levels.

In the "Ethnography of Infrastructure", Star makes the case
for the utility of infrastructures [21]. She describes the
background nature of infrastructure and its interdependence
with the user's environment. Infrastructure is often taken for
granted to the point of not being an element in analysis. While
Star has rather formal examples of infrastructure such as
telephone books, this study will leverage the idea to analyze the
system constraints on a user's activity in a system. Instead of
ethnography and studying the infrastructure itself, this part will
rely on user descriptions of their infrastructure environment.

The descriptions will have two components. User sketches
provide a graphical interpretation of people's views on their use
of technology [22,23]. They constrain the answer space in a
different way than typical surveys. They also provide a point of
discussion. For example, if someone draws how they use a
computer and the drawing doesn't include speakers, does that
mean that they aren't plugged in, or are unimportant to the user?

ICAD09-3

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark, May 18-22, 2009

Follow-up questions can shape a discussion based on the
participant's drawings.

The second approach involves more traditional surveys.
Through multiple choice and short answer questions we will
build a quantitative understanding of the equipment and its use
in the user's environment. "What percentage of the time you are
at your computer do you have your sound on?" Questions such
as this provide general ideas about how people involve sound in
computing. Combined with the technological sources, it defines
what sounds make it from the software generation to the users'
ears.

The visually impaired community makes particular use of
audio assistive technology to successfully operate in the
computing world. This section on infrastructure will pay close
attention to the differences in survey results between those of
the sighted and visually impaired communities. As such, this
will be an element of the user demographics collected in this
project. While sketching would be a valuable component in
understanding any infrastructure, it may fail when working with
visually impaired participants who are blind or have very low
vision. However, a modeling approach or spoken or typed
description may provide a way to capture the essence of a
sketch.

4. CONCLUSION

The purpose of this paper is to outline our plans and to elicit
responses in this field of research. The project itself is a
characterization of the audio in software artifacts available to
the general public. We expect that the baseline data will
provide patterns found within and between the three methods of
data gathering. The methods themselves were selected to
provide complementary views of the situation. By focusing on
the situation as it is now, we hope to provide a clearer picture of
where new audio research can be directed toward.

5. REFERENCES

[1] Freedom Scientific, “Freedom Scientific - JAWS for
Windows Screen Reading Software.”

[2] J. Lumsden and S.A. Brewster, A survey of audio-related
knowledge amongst software engineers developing human-
computer interfaces, Glasgow, England: Glasgow
University, 2001.

[3] J. Lumsden and S.A. Brewster, “Guidelines for audio-
enhancement of graphical user interface widgets,”
Proceedings of HCI, London, England: 2002.

[4] S. Brewster, “A sonically enhanced interface toolkit,”
Proceedings of the 3rd International Conference on
Auditory Display, Palo Alto, CA, U.S.: 1996.

[5] B.K. Davison and B.N. Walker, “AudioPlusWidgets:
Bringing Sound to Software Widgets and Interface
Components,” Proceedings of the 14th International
Conference on Auditory Display, Paris, France: 2008.

[6] W.E. Bijker, Of Bicycles, Bakelites, and Bulbs: Toward a
Theory of Sociotechnical Change, Cambridge, Mass: MIT
Press, 1995.

[7] P. du Gay, S. Hall, L. Janes, H. Mackay, and K. Negus,
Doing Cultural Studies: The Story of the Sony Walkman,
London: Sage, 1997.

[8] P. Dourish, “Implications for Design,” Proceedings of the
SIGCHI conference on Human Factors in computing
systems, Montreal, Canada: ACM, 2006.

[9] Bell and P. Dourish, “Yesterday's Tomorrow: notes on
ubiquitous computing's dominant vision,” Ubiquitous
Computing, London, England: Springer-Verlag, 2006.

[10] W.W. Gaver, “Auditory icons: Using sound in computer
interfaces,” Human-Computer Interaction, vol. 2, 1986,
pp. 167-177.

[11] W.W. Gaver, “The SonicFinder: An interface that uses
auditory icons,” Human-Computer Interaction, vol. 4,
1989, pp. 67-94.

[12] M.M. Blattner, D.A. Sumikawa, and R.M. Greenberg,
“Earcons and icons: Their structure and common design
principles,” Human-Computer Interaction, vol. 4, 1989,
pp. 11-44.

[13] S.A. Brewster, P.C. Wright, and A.D.N. Edwards, “An
evaluation of earcons for use in auditory human-computer
interfaces,” Proceedings of the INTERACT '93 and CHI
'93 conference on Human factors in computing systems,
Amsterdam, The Netherlands: ACM, 1993.

[14] B.N. Walker, A. Nance, and J. Lindsay, “Spearcons:
Speech-based earcons improve navigation performance in
auditory menus,” Proceedings of the 12th International
Conference on Auditory Display, London, England: 2006,
pp. 63-68.

[15] D. Palladino and B. Walker, “Efficiency of Spearcon-
Enhanced Navigation of One Dimensional Electronic
Menus,” Proceedings of the 14th International Conference
on Auditory Display, Paris, France: 2008.

[16] M. Ananya, R.C. Perry, and W. Ge, “TAPESTREA: Sound
scene modeling by example,” ACM SIGGRAPH 2006
Sketches, Boston, MA: ACM, 2006.

[17] B.S. Mauney and B. Walker, “Creating functional and
livable soundscapes for peripheral monitoring of dynamic
data,” Proceedings of the International Conference on
Auditory Display, Sydney, Australia: 2004.

[18] P. Yalla and B. Walker, Advanced auditory menus, 2007.
GVU Technical Report. GIT-GVU-07-12.

[19] Y. Padioleau, L. Tan, and Y. Zhou, “Listening to
Programmers - Taxonomies and Characteristics of
Comments in Operating System Code,” Proceedings of the
31st International Conference on Software Engineering,
ICSE, 2009.

[20] C. Frauenberger, T. Stockman, and M.L. Bourguet,
“Pattern design in the context space: A methodological
framework for auditory display design,” Proceedings of the
13th International Conference on Auditory Display,
Montreal, Canada: 2007.

[21] S.L. Star, “The Ethnography of Infrastructure,” American
Behavioral Scientist, vol. 43, Nov. 1999, pp. 377-391.

[22] M. Tohidi, W. Buxton, R. Baecker, and A. Sellen, “User
sketch: A quick, inexpensive, and effective way to elicit
more reflective user feedback,” NORDICHI, 2006.

[23] E.S. Poole, M. Chetty, R.E. Grinter, and W.K. Edwards,
“More than meets the eye: Transforming the user
experience of home network management,” Designing
Interactive Systems, 2008.

ICAD09-4

	1. Introduction
	2. How can we increase sound use?
	2.1. Use Domains

	3. Characterizing Sound Use Today
	3.1. Detailed Software Behavior
	3.2. Source Code
	3.3. Infrastructure

	4. Conclusion
	5. REFERENCES

