
Mapping data and audio using an event-driven audio
server for personal computers

Michael Hamman
University of Illinois Urbana-Champaign

705 W. Nevada # 4
Urbana, IL 61801

m-hamman@uiuc.edu

Camille Goudeseune
University of Illinois Urbana-Champaign

603 W. Nevada #1
Urbana, IL 61801

cog@uiuc.edu

ABSTRACT
Recent research suggests that auditory display offers new means forobserving and differentiating
complex data. One standard method forrendering an auditory display is playback of previously
generated audiofiles. This method is enhanced through playback modification usingtools such as
Intel's RSX. MIDI-based synthesizers provide yet anothermethod for auditory display. These
methods have various drawbacksthat are pressed to the limit when confronted with the
requirements ofanalogical display systems. What is needed, therefore, is a way ofrendering
audio that is to auditory display what a system like OpenGL isto graphical display. Audio
Rendering Engine And Library (AREAL)is a real-time audio renderer and sound synthesis
software library. It offers the software developer and auditory display designer a set oftools for
developing high-quality audio applications for low-cost multimediacomputers using consumer or
professional audio hardware. The primarypurpose of AREAL is to enable a "model-based"
approach to audio which isbecoming common on high-end (and high-cost) workstations. This
papergives a brief description of this software system and its potential foruse within the auditory
display community.

INTRODUCTION
Recent research suggests that auditory display offers new means forobserving and differentiating
complex data [3][7]. An auditory displaycan be used to signal the occurrence of discrete events
or to signal thestate of an evolving multivariate data set [1][3][8]. This leadsto a variety of
approaches. At one extreme, auditory events are associatedto data symbolically; that is, their
meaning is characterized in termsof the source to which they are attributed [6][7][8]. At
theother extreme, auditory events are associated with data analogically; thatis, their meaning is
characterized in terms of the interrelations withinand among data [8][10].

One standard method for rendering an auditory display is playback ofpreviously generated audio
files. An advantage of this method isthat it allows for precisely controlled studio engineering
involving recording,synthesis, and processing techniques that would be computationally
prohibitivefor real-time rendering. In addition, tools for editing and playbackof audio files are
readily available under virtually any operating system. A disadvantage of this method is that
multiple playback of the same audiofile, over and over, can become tiresome to the ear.
Moreover, whiledisk storage generally costs little, the management of large numbers ofaudio

files is unruly and inevitably error-prone. Finally, no matterhow many different audio files are
used, there will always be holes inthe mapping of data features to acoustic features if the data or
processto be mapped is even slightly complex. This becomes more and morethe case as we
move toward analogical displays.

One way to deal with this situation is to employ already existing (andfor the most part, free)
audio tools which allow for real-time manipulationof stored sound files. This can be a viable
solution for "symbolic"auditory displays representing discrete events and process states. Through
the manipulation of a single sound file, one could represent manydifferent states of a display
object such as an icon or mouse cursor. However, this approach still suffers under the
requirements called forwith analogic displays. In order to deliver effective analogic
representations,an audio rendering system is needed which can be deeply mapped to the
modelbeing represented.

At first glance, MIDI-based synthesizers offer an appealing alternativeto the use of sound files.
Using MIDI, a synthesizer can be triggeredby mapping data to particular MIDI messages [7].
The problem withMIDI, however, is two-fold. First, one must accept the sounds thatare given by
the particular synthesizer technology at ones disposal. These sounds may differ, depending on
the particular device being used.Second, MIDI is limited by its narrow control bandwidth and
thuscannot be used for the display of highly multivariate and rapidly evolvingdata [9]. This has
a secondary consequence which is that while onemight solve the problem of mapping
multivariate data to sound through theuse of system exclusive messages (messages that are
manufacturer-specific),these messages exacerbate the problem of narrow bandwidth since they
usuallyrequire higher bandwidth per event.

What is needed is a way of rendering audio that is to auditory displaywhat a system like OpenGL
is to graphical display. Moreover, toolsare needed with which auditory display designers can test
hypotheses andexperiment with different methods by which a data model might be
renderedacoustically.

AREAL
Audio Rendering Engine And Library (AREAL) is a real-time audio rendererand sound synthesis
software library. It offers the software developerand auditory display designer a set of tools for
developing high-qualityaudio applications for low-cost multimedia computers using consumer
orprofessional audio hardware. The primary purpose of AREAL is to enablea "model-based"
approach to audio which is becoming common on high-end(and high-cost) workstations. We
understand "model-based" audio tobe that in which auditory events are generated in real-time as
a directmapping of a dynamically evolving data set or process.

AREAL incorporates (1) a real-time scheduler for managing uninterruptedplayback of computed
audio samples using a standard sound card; (2) anextendible synthesis library, whose API is
called directly by an application;and (3) a method by which audio rendering "models" are
specified.

SOFTWARE ARCHITECTURE
AREAL consists of three software layers: the Scheduler, the SynthesisEngine, and a C-language
"wrapper" (figure 1).

The Scheduler handles the passage of samples to the sound card. It does this by iteratively filling
buffers with samples as these are computedwithin the Synthesis Engine and inserting these into
the sound card's queue. It maintains as low a latency as possible while providing sufficient
safetyfrom audio interruptions due to other processes needing the CPU. When the Scheduler
needs more samples, it executes a callback against theSynthesis Engine.

 Figure 1 Figure 2

The Synthesis Engine contains a hierarchy of sound synthesis classesand a facility for handling
messages from the Wrapper and Scheduling layers. Upon initialization, a list of sound objects is
instantiated. Whenthe Scheduler requests samples (through execution of its callback
procedure),the Synthesis Engine obtains buffers of samples from each synthesis objectand sums
them into the buffer that has been passed from the Scheduler (figure2).

The sound synthesis class library is a collection of C++ classes, eachof which specifies a
particular synthesis algorithm and defines a standardclass interface. We envision the sound
synthesis class hierarchyas an "open" architecture, enabling addition of customized synthesis
algorithmsand extensions of current algorithms based on particular rendering andoptimization
requirements. Currently, the library is extendible onlyat the source-code level. In a future
version, however, it is anticipatedthat this extendibility will be realized through implementation
as an ActiveXcontainer. ActiveX is a Microsoft construct that allows differentapplications to
exchange information and for one application to embed itselfinto the other, thus becoming, in
effect, a component of it. As ActiveXcontrollers, sound synthesis libraries could literally be
"dropped into"AREAL and thus become one of its synthesis libraries. This kind ofextendibility
holds great promise for the future of audio applicationsin general and for auditory display in
particular.

Sample underflow (which can cause annoying clicks in the audio signal)is handled through a
facility called the OctaneMeister. The OctaneMeisteranticipates possible sample underflow by
monitoring CPU load. Whenthis load nears 100 per cent, the OctaneMeister tells the list of
instantiatedsynthesis objects to lower its computation "octane." Each synthesis objecthas its own
method for reducing its octane which is defined within theclass from which it is instantiated.
Moreover, synthesis objectsare ranked in order of complexity: those whose performance would
be mostseriously compromised through the lowering of its "octane" are placed atthe bottom of
the list.

The C-language "wrapper" forms a shell around the Scheduler and theSynthesis Engine. It
exports a set of C functions to the client application. This set of functions is referred to as the
"API." The API constitutesthe sole interface between the application and AREAL (as depicted
by thesingle bar connecting the APPLICATION and the Wrapper in figure 1). The motivation

for defining the interface as a C-language API, rather thanallowing the application to interface
directly to the C++ library classeswithin AREAL, is to make the interface as simple as possible
to use andto allow for applications written in languages other than C++ to be linkedto the
library. Functions defined within the API instantiate synthesisobjects, set up of data-to-renderer
mappings, and handle control messagesto individual synthesis objects.

MAPPING DATA TO AUDIO FROM WITHIN AN APPLICATION
Finding flexible though coherent methods for mapping data to an audio-renderingagent is a
challenging task. Our approach is predicated on the desirethat once such a mapping has been
established, an application should nolonger have to think about how its data and processes are
being acousticallyrendered. Therefore, each time there is a change made to a variablewhich is
mapped to an audio parameter, a call is made to a function withinthe AREAL API, telling
AREAL the new value of that variable. Thisvalue is then dispatched to the appropriate synthesis
algorithm.

Within the application, each data point that is to be rendered is mappedto a parameter within a
sound synthesis algorithm. Such an algorithmis encapsulated in a synthesis class residing within
AREAL. A soundsynthesis parameter is used to control some aspect of the synthesis
algorithm. In a relatively simple case, such a parameter could control the frequencyof a single
sine tone, while another could control its amplitude. In more complicated cases, such a parameter
might control some aspect ofa more elaborate synthesis algorithm.

In an effort at a clear explication of how this works, a simple exampleis provided. In this
example, we start with a data set that containstwo variables, x and y, which describe a Cartesian
graph. We selecta simple additive synthesis algorithm which is defined by 3
parameters:frequency (F), amplitude (A), and number partials (T). Within theapplication (with
which the AREAL library has been linked), first a rangeis defined for each synthesis parameter.
In our example, F will havethe range [100Hz, 1100Hz], A will have the range [10000, 20000],
and Twill have the range [0 partials, 20 partials].

After ranges have been defined for each synthesis parameter, a singleC-language function call is
made to set the mapping between these datapoints and synthesis parameters:

 SetMapping(hSynthObj,"F=(x,10,40);A=.3*(x,10,40)+.7*(y,.03,-.03); T=(y,.1, .9)");

SetMapping() has two arguments: a pointer (handle) to the synthesisobject (which has been
previously defined within the application), anda string which specifies the mapping between
application data points andsynthesis parameters. This string is parsed within the AREAL
libraryin order to realize the specified mapping. In the above example,the two data points are
mapped to the three synthesis parameters as follows. All synthesis parameters in the mapping are
normalized to the range [0,1]relative to the range set earlier in the program. F is a direct
linearmapping from data point x: as x increases from 10 to 40, F increasesfrom 0 to 1. A is a
weighted sum of data points x and y, 30% and70% respectively, with x traversing the domain
(10, 40) and y traversingthe domain (0.03, -0.03). So, for instance, if x=25 and y=0.0, thenA
would have a normalized value of (.399=(.3 * .33)+(.7*.5)). MeanwhileT maps directly to data
point y with the domain (.1, .9).

Such a mapping is specified once within the application. Afterthis, whenever the state of one of
the data points is changed a call ismade to the AREAL API to inform it of this change in state:
 ...
 x = getXValue();
 SetParmValue(hSynthObj,"x", x);
 ...

Given a sequence of states for x and y, a correlated sequence of parameterstates is generated
within the synthesis algorithm. Such a situationis shown in figure 3, in which a sequence of 5
states for x and y is correlatedto a similar sequence for synthesis parameters F, A, and T.
Thesesynthesis parameters are in turn mapped against the range with respectto which they have
been defined for this application. The valuesfor the synthesis parameters thus realized are shown
in figure 4. As can be observed, this sequence defines an acoustical behavior in whichfrequency
rises from 100 to 370 Hz, while amplitude drops from 17000 to15400 and the number of partials
goes from 5 to 0 partials. The resultantbehavior defines an acoustical "gesture" which, while
rising in pitch,descends in loudness and in timbral richness. This "gesture" constitutesa
potentially informative and evocative representation of the data it rendersin which x rises
continuously while y descends somewhat sharply beforecoming back up again slightly.

 Figure 3 Figure 4

AUDIO DESCRIPTION FILES
Mapping data to audio parameters from within the application itselfhas one drawback: if one
wishes to change the mapping, then the applicationhas to be recompiled. Not only is this
burdensome for auditory displaydesigners who have access to the source code, it can prohibit
those whoare not themselves programmers from being able to make changes in thatmapping at
all.

Audio description files define data-to-renderer maps within a text file. The application reads this
file during its initialization, and the mappingdesignated within that file is applied inside the
application. Designersand composers can then effect changes in data-to-rendering mapping by
makingchanges with respect to this file.

DEFINING AN AUDITORY DISPLAY OF LARGE DATASETS
Such an organization can be used to represent an arbitrarily largedata set whose values unfold at
any number of rates. Imagine, forinstance, a data set involving three Cartesian maps, such as the
one describedabove, plus additional data points. Figure 5 depicts the patch withwhich the
corresponding acoustical representation might be defined. Each of the three Cartesian sets are
shown as Sets A through C. Synthesisobjects are labeled Synth1, Synth2, and Synth3. As
shown, Cartesianset A is mapped to synthesis object 1, and so on. Meanwhile, otherdata points
(grouped together, for the sake of illustration, as "Otherdata points") are mapped to parameters
by which a reverberation processorunit is controlled and by which channel placement is
controlled.

 Figure 5

The resulting signal reads from left to right, beginning with the additivesynthesis objects.
Samples produced by each of the synthesis objectsare summed, and placed through the
reverberation processor. Thisreverberation processor, has for the sake of simplified illustration,
twoparameters: reverberation time and delay time. The resulting samplesare then passed to the
channel placement module, where each is multipliedby the value defined by that module's single
control parameter. Foreach sample, this value is placed in the right-channel buffer cell, whileits
inverse value is placed in the left-channel buffer cell.

With this particular arrangement, we are able to map a 12-D data setto elements of an auditory
display. Using an Audio Description file,a designer can fine-tune this mapping until s/he finds
the configurationwhich best reflects an informative view of the data being represented.

FUTURE DEVELOPMENTS
AREAL proposes a possible solution to the "build it yourself" problemwhich currently plagues
research and development in auditory display. As such a proposal, it is in the infant stage of a
potentially viable technology. As such, its future development is dependent on feedback from
other researcheswithin the auditory display community. Currently, we are planningto develop
AREAL as an ActiveX server. We are also planning on addingnetwork capabilities so that
AREAL can act as a server in a network environment. Thus, a low-cost NT workstation could
serve as the audio server, whilethe applications whose data it renders can run on other
computers. We are also hoping to develop a Netscape plugin so that auditory displaysmay be
rendered over the Web. Finally, we wish to develop graphicaltools for specifying and
investigating data-to-renderer maps.

REFERENCES

1. Blattner, M.M., Papp III, A. L., Glinert, E. P. "Sonic Enhancementof Two-Dimensional
Graphics Displays." in Auditory Display: Sonification,Audification, and Auditory Interfaces, ed.

G. Kramer. Reading, Mass:Addison-Wesley Publishing Co. 1994.

2. Brewster, S. A., Wright, P. C., Edwards, D. N. "A Detailed Investigationinto the Effectiveness
of Earcons." in Auditory Display: Sonification,Audification, and Auditory Interfaces, ed. G.
Kramer. Reading, Mass:Addison-Wesley Publishing Co. 1994.

3. Fitch, W. T., Kramer, G. "Sonifying the Body Electric: Superiorityof an Auditory over a
Visual Display in a Complex, Multivariate System."in Auditory Display: Sonification,
Audification, and Auditory Interfaces,ed. G. Kramer. Reading, Mass: Addison-Wesley
Publishing Co. 1994.

4. Gaver, W. W. "The SonicFinder: An Interface that Uses AuditoryIcons." Human-Computer
Interaction 4(1): 67-95. 1989.

5. Gaver, W. W., and Smith, R. B. "Auditory Icons in Large-scaleCollaborative Environments."
in Human-Computer Interaction - INTERACT'90, ed. D. Diaper. North-Holland: Elsevier
Science Publishers. 1990.
6. Gaver, W. W. "Using and Creating Auditory Icons." in AuditoryDisplay: Sonification,
Audification, and Auditory Interfaces, ed. G.Kramer. Reading, Mass: Addison-Wesley
Publishing Co. 1994.

7. Kramer, G. and, Ellison, S. "AUDIFICATION: The Use of Soundto Display Multivariate
Data." Proceedings of the 1991 InternationalComputer Music Conference, Montreal. San
Francisco: Computer MusicAssociation, 1991. pp. 214-221.

8. Kramer, G. "An Introduction to Auditory Display." in AuditoryDisplay: Sonification,
Audification, and Auditory Interfaces, ed. G.Kramer. Reading, Mass: Addison-Wesley
Publishing Co. 1994.

9. Moore, F. R. "The dysfunctions of MIDI," Computer Music Journal12(1): 19-28. 1988.

10. Sloman, A. "Afterthoughts on Analogical Representations." in Readingsin Knowledge
Representation, ed. R. Brachman and H. Levesque. Los Altos, CA: Morgan Kaufman.

