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Abstract

Efficient representations of the head-related transfer functions (HRTFs) based on autore-
gressive moving average (ARMA) modeling are explored in this chapter. A relatively new
technique for ARMA order estimation, based on the minimum eigenvalues of a covariance
matrix, is used to estimate efficient model structures. A major advantage of this method is
that no prior estimation of the model parameters is required. Examples will be given which
indicate that the HRTFs are primarily autoregressive (AR} systems.

1 Introduction

The head-related transfer functions (HRTFs) describe the position-dependent transformation in
sound pressure which occurs between a source in anechoic space and the eardrums of a listener.
HRTF measurements are commonly obtained as a series of time-domain impulse responses using
techniques similar to those found in Wightman and Kistler [1, 2], with a pair of responses being
measured for each desired source position. Simulation of virtual acoustic environments typically
involves finite impulse response (FIR) filtering based on measured HRTF impulse responses. Such
implementations are, however, generally not computationally efficient.

In this chapter, autoregressive moving average (ARMA) systems will be employed to identify
more efficient representations of the HRTFs. An ARMA system can be described by its input-
output relationship, given by the following linear, constant-coefficient difference equation of order

(p,q): ) .
Z ay(n—1) = Z bjz(n — 7) (1)
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where z(n) is the system excitation and y(n) is the system response.

Given excitation-response records for an unknown system, the system identification problem
essentially becomes a two-part process. Firstly, one needs to determine the order (p,q) of the
system and, secondly, one must estimate the system parameters (ax’s and bj,s). Estimating the
order (p, q) will be the primary concern of this chapter. A recently developed technique for model
order estimation based on minimum eigenvalues of a covariance matrix will be used to estimate
appropriate model orders. Results will be presented which indicate that HRTFs are primarily AR
systems for most source positions.

2 Minimum Eigenvalue Model Order Estimation

Assume for the moment that the observed excitation-response data satisfies Eq. (1) exactly for
some undetermined orders p and ¢q. Note that for finite-length data records, Eq. (1) can be
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Figure 1: Minimum eigenvalue plots (in dB) for (a) an MA(3) system, (b) an AR(3) system, and
(c) an ARMA(3,3) system.

rewritten in matrix form as
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or simply as
Ypap = Xgb, (3)

in which Y} is a (IV + 1) x (p + 1) response matrix, X, is a (IV + 1) x (g + 1) excitation matrix,
and a;, and by are respectively (p+1) x 1 and (g+1) x 1 column parameter vectors. Rearranging
Eq. (3) yields

0
ap 0
[ Y, X4 ] A il
bq ‘
0
Let the data matrix Dy, be defined to be
Dypg = [ Y, : -X, ]
and the correspdnding covariance matrix Ry 4 to be
R?7q = DI:I’:qu:q ° (4)
Using eigenvalue decomposition, the covariance matrix can be decomposed into the form
Ry, = QAQT (5)

in which the eigenvector matrix Q has as its columns the set of orthonormal eigenvectors of Ry 4
and the diagonal eigenvalue matrix

A= djag()\l, Az, ey /\min) (6)
has as its elements the corresponding eigenvalues. Typically, the eigenvalues are ordered such

that (A1 > X > ... > Amin)-
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It can be shown [3] that if the “true” order of the unknown system is(np,nq) and the system
order (p,q) in Eq. (2) is selected such that p > np and ¢ > ng, then the corresponding covariance
matrix Ry, o will have at least one zero eigenvalue (the minimum eigenvalue) since there will exist
at least one exact solution for a, and b, in Eq. (4). Thus, the true order of the system can be
selected as the lowest order (p,q) at which the minimum eigenvalue is zero.

Typically, however, the observed excitation and response data will not exhibit a perfect ARMA
relationship as indicated by (1). In such cases, the minimum eigenvalue will not equal zero once the
true system order has been reached but will equal some small, nonzero value. For example, Figure
1 shows typical minimum eigenvalue mesh plots for ARMA(3,3), MA(3), and AR(3) systems. For
each system, a 200 coefficient impulse response is obtained to which a, low-variance, white noise is
added. The excitation is assumed to be a noise-free discrete-time impulse. The covariance matrix
is then formed for all model orders (p,¢) such that 0 < p < 10 and 0 < ¢ < 10. For each order
(p,q) the minimum eigenvalue of the corresponding covariance matrix is computed and plotted
in dB relative to unity, i.e., 10 X log;o(Amin)- Since noise has been added to the observed system
response of all three systems the minimum eigenvalues do not drop to zero once the true model
order has been reached, but rather to some small, nonzero value. It can be shown [3] that for
large N, the increment in minimum eigenvalues will be upper bounded by a value proportional
to the noise variance, although an in-depth discussion of this topic is beyond the scope of this
chapter.

3 Application to HRTF Data

This technique can be applied to HRTFs to estimate the appropriate ARMA model orders. For
HRTF data, the system excitation z(n) is taken to be the discrete-time impulse, and the ob-
served system response y(n) is taken to be the measured HRTF impulse response, converted to a
minimum-phase sequence before applying the order estimation procedure. .

Figure 2 shows the minimum eigenvalue plots for left ear HRTFs of a single subject for several
positions on the horizontal plane. Here, an azimuth angle of 0° indicates a position directly in
front of the subject, negative azimuth angles indicate positions to the subject’s left, and positive
azimuth angles indicate positions to the subject’s right.

Comparing the theoretical mesh plots of Figure 1 to the HRTF plots of Figure 2, it appears
as though the HRTF's are primarily AR systems. Indicative of an AR system is the fact that the
minimum eigenvalues drop sharply in the p axis direction and slowly in the q axis direction. This
effect is observed for the HRTF's shown in Figure 3, and for HRTFs in general. To select ARMA
model order estimates, an eigenvalue threshold can be used. The order at which the minimum
eigenvalue drops below this threshold is selected as the estimate.

To demonstrate the AR nature of the HRTFs, a —15 dB eigenvalue threshold was used. AR
model order estimates were computed using this —15 dB threshold for 450 minimum-phase, left ear
HRTFs of a single subject for positions distributed evenly about a spherical shell by considering
minimum eigenvalues along the p axis. Figure 4a shows a histogram of the AR model order
estimates for all 450 transfer functions. The mean order estimate is 9.8 and the highest order
estimate is 14. Similarly, MA model order estimates for the —15 db threshold were also computed
for the same 450 HRTFs by examining minimum eigenvalues along the q axis. The results are
illustrated by the histogram of Figure 4b. It is clear that the MA model order estimates are
significantly higher at this threshold than the AR model order estimates. :

At lower thresholds, however, the difference between AR and MA model order estimates is
reduced due to the fact that the MA model shows a gradual decrease in minimum eigenvalues
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Figure 2: Log-scale minimum eigenvalue ploits for HRTF functions.
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Figure 3: Histograms of —15 dB (a) AR order estimates (b) MA order estimates.
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(along the ¢ axis) while the AR model shows little decrease above 15th order (along the p axis).
Thus, the AR model appears to have its greatest advantage over the MA model at low model
orders. The question arises as to the perceptual contribution of the AR model for sound localiza-
tion. Lowering the eigenvalue threshold corresponds roughly to lowering the allowable modeling
error variance, an objective criteria which may not directly reflect the perceptual performance of
the model. Consequently, perceptual listening tests are needed to fully assess the significance of
these results.

Conclusions

The use of autoregressive moving average models for efficient representation of the head-related
transfer functions has been explored in this chapter. Using a minimum eigenvalue model order
estimation technique, the HRTFs have been shown to be primarily AR systems. These results
suggest the implementation of HRTFs using autoregressive filters or possibly the use of an au-
toregressive prefilter for efficient computation, although the validity of such an implementation
has yet to be subjectively demonstrated.
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