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Abstract

The state of computer generated sound has advanced rapidly, and there exist many different
ways of conceptualizing the abstract sound structures that comprise music and other complex
organizations of sound. Many of these methods are radically different from one another, and
so are not ususally used within the same system.

One problem that almost all methods share is one of control, as large amounts of data are
needed to specify sounds. How do we create, examine, and modify these complex structures?
The problem is exacerbated if we consider the realm of interactively controlled sound.

This chapter presents an organization which, rather than forcing a particular way of think-
ing about sound, allows multiple arbitrarily high-level views to coexist, all sharing a common
interface. The methods or algorithms are abstracted into a objects called auditory actors.
This encapsulation allows different algorithms to be used concurrently.

All communication with and between these actors is carried out through message-passing,
which allows arbitrary types of information (such as other messages) to be easily communi-
cated. This standardizes control without limiting it to a particular type of data.

A prototype system was implemented using this model. This system was used by a number
of different developers to create audio interfaces for interactive virtual reality applications,
which were demonstrated at the SIGGRAPH 94 conference in Orlando, Florida. Compared
to earlier systems, developers were able to create more complex audio interfaces in a shorter

1 Introduction

1.1 Sound in Interactive Applications

Many researchers have created systems, languages, and paradigms for creating sound with the
aid of computers [1, 2, 3]. In the past, the utility of these systems for real-time work has been
limited to either using very simple algorithms or controlling special-purpose hardware [4, 5, 6].

For many purposes, MIDI-compatible synthesizers suffice for the sound generation hardware.
However, these devices tend to be limited, both in the range of sounds of any one unit, and
especially in the area of interactive control. Only very recently has the computing power of
general-purpose computers become equal to the task of producing reasonably complex sound
with good fidelity in real-time.

Given hardware and software capable of generating the types of sounds desired, perhaps a
more difficult problem is the organization and control of these sounds into the temporal sound
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structures we recognize as rhythm, melody, harmony, and musical form. Although these are
musical terms, the same capabilities are needed if we are to encode information into sound in a
way that the user of a system can comprehend.

1.2 Levels of Interface

There are at least two levels of interface involved in any computer application. We will refer to
these as the Designer Interface and the End-user Interface. This chapter is concerned with the
Designer Interface, sometimes called the Application Programmer Interface. We use the former
term to emphasize the fact that many of the people involved in the development of interactive
applications are not programmers; instead, they program because that is what is needed to create
the application.

At this level, the application designer makes decisions that will strongly influence the way the
end-user conceptualizes the world. However, the designer’s view of the system and its capabilities
is defined by the system within which he or she works.

2 Problems

2.1 Lack of Auditory Understanding

Multimedia designers tend to come from a graphical background, and thus most applications are
primarily visual. Sound is often used at a trivial level to provide feedback for actions such as
‘button pushes or error conditions. Even when the designer has an understanding of sound in an
interactive environment, the tools provided often do not facilitate complex relationships between
user, graphics, and sound.

2.2 Few Tools for High-Level Control

Most available tools for sound development are at a low level of abstraction. The situation is
analogous to being able to program only at the assembly level — in effect, designers are given
too much freedom. Although a low-level system is theoretically flexible, complex applications are
prohibitive from a practical standpoint. Faced with this situation, designers may use sound very
simply, so that (for example) only commands for triggering ‘auditory events of a long duration
would be issued. This will result in a very coarse-grained control, and much of the dynamic,
real-time aspect of sound will be lost.

If finer control is exercised, there is the danger of making the structure of the application too
complex. The fine-grained timing needed to generate and control complex sound structure can
be difficult to achieve in a standard programming language.

One of the most difficult parts in the creation of any interactive interface is the precise control
of time. In animation systems, specifying motion paths for a large number of objects can be a
daunting task, and several researchers have proposed methods for automated or assisted motion
generation [7]. Precise control of time is even more important when dealing with sound. Many
simultaneous streams of information can be contained in a sonic environment, and the human
auditory system is exquisitely sensitive to minute differences in temporal location of events.

2.3 Control Data Explosion

If users are restricted to low-level models of sound production, a problem arises in the large
amount of control data that must be specified to produce interesting results [8]. An example

204



of this is additive synthesis, a simple and flexible method of sound production. However, this
simplicity and flexibility also makes additive synthesis quite difficult to control. This difficulty
is not unique to additive synthesis, and is one of the principal reasons that most “synthesized”
sounds today are in fact simply playback of digitally sampled sounds.

2.4 Interdisciplinary Teams

As technology becomes more complex, many formerly disparate fields are brought together in
interdisciplinary research and development teams. This mode of working has been demonstrated
for the past 20 years at the Electronic Visualization Laboratory (EVL) at the University of Illinois
at Chicago, and more recently at the Renaissance Experimental Laboratory at the National Center
for Supercomputing Applications (NCSA). At these sites and others, scientists, engineers, and
artists have collaborated on various projects.

While this interchange of ideas often results in ideas or discoveries that would not otherwise
have occurred, some effort can be wasted as team members are forced to learn (often a considerable
amount) about each others’ code implementation details.

3 What is Needed

3.1 Knowledge Encapsulation

Every system for sound production, no matter how low-level, shapes the user’s view of the nature
of sound. The importance of this view cannot be overstated. A problem that is intractable with a
particular formulation may have a trivial solution if it is stated differently. Experts in the fields of
sound synthesis and composition bring their own schemata to bear when creating new techniques.

A system that supports a particular view of sound creation will facilitate the use of algorithms
and techniques based on that view. If different sets of knowledge and concepts can be encapsu-
lated into objects or routines in the system, then users can simultaneously make use of multiple
paradigms for sound creation.

3.2 High-Level Control

Most designers who are not experts in audio design need high-level functionality, in particular to
aid in control of timing, but also in the generation of the large amounts of control data needed to
drive many synthesis algorithms. For instance, the designer would be presented with a number of
“black box” algorithms, which produced interesting results that could be controlled with a small
number of intuitive parameters.

3.3 Low-Level Control

More advanced or adventurous designers would want access to parameters at a low level also. Not
only should low-level objects such as oscillators and amplitude envelopes be directly controllable,
but the black boxes mentioned above should allow designers to modify low-level parameters of
the algorithm.

3.4 Distributed Working Arrangement

An application may be developed through collaboration between several individuals with different
fields of expertise. For example, a scientist may create simulation data, which is then visualized by
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a graphics programmer or artist, while sound is added by an electronic music composer [9, 10, 11].
A system designed to work in this environment should allow these three individuals to collaborate
without being forced to understand each others’ code.

4 Auditory Actors

4.1 The Actor Concept

This chapter proposes an organization that satisfies the above requirements. The approach is
based on the concept of an actor, taken from the field of artificial intelligence (AI) [12]. This
concept has also been used in computer music, for example in the interpreted language Actl [13].
Actors are active objects that may have an arbitrarily complex internal state as well as a set of
behaviors. Here, the term active implies that a process or thread is associated with each actor.
Although this is usually simulated by time-slicing or polling, parallelism is inherent in the concept
of actors.

Actors are software objects that encapsulate knowledge and behavior in some way. All com-
munication with and interaction between actors is carried out through message passing. Since
each actor hides its internal structure, it is possible to have multiple representations of a single
conceptual object. This is important, since in auditory display as in AI, no one representation
may be best for all purposes [14].

4.2 Auditory Actors

Auditory actors can respond to messages from the client and interact with each other. As they
are active objects, actors will proceed with their behavior if no new messages are received. This
approach can be thought of as rule-based, so rather than simply specifying what an auditory actor
should do now, a message can specify how the actor should respond to various situations from
now on. B

All auditory actors have some intrinsic concept of time. This can shift the burden of timing
logic from the client to the actor. As an example, consider the case where the client wishes to
play a melody. If the timing is handled outside the client application, rhythmic accuracy can
be improved, especially if the server is running on a separate computer. However, the client
gives up intimate control over when individual events are initiated, so this can be a problem if
non-auditory events or processes such as animation are to be synchronized to the melody. The
problem of synchronization is addressed below.

Classes of auditory actors are built hierarchically, and can be classified into two general (and
not necessarily mutually exclusive) categories. The first category consists of objects that create
new waveforms, timbres and types of sounds. These classes of actors could be used to (for instance)
simulate bell or trumpet sounds. The second category comprises objects that organize time at
a larger scale, such as musical phrases and rhythms. These actors could then send messages to
actors from the first category to generate the sounds. '

A benefit of message-passing as the only means of communication with actors is that the
identity of the message sender is hidden from the recipient. This implies that an actor cannot
distinguish a message sent by the client from a message sent by another actor. Building up a
network of actors is then much simplified, as the client can test different subsets of the network
independently.
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Figure 1: The Client-Server Model.

4.3 How Auditory Actors Can Help
4.3.1 Knowledge Encapsulation

There exist many different and useful methods of generating sounds and the organization of
sounds. By consulting with experts in these fields, any synthesis or compositional algorithm can
be encapsulated into an auditory actor which would accept messages appropriate to the control
of the given algorithm. This actor would then be available for future applications to use. Each
of these actors would encapsulate knowledge about a task as well as a way of approaching that
task. Unlike libraries of sounds, libraries of actors would be dynamic; that is, although the overall
approach to a timbral or compositional task might be determined by the class of actor used, the
client would be able to get a wide range of behaviors and effects from a single class.

4.3.2 High-Level Control

Once a respectably sized library of actors has been developed, the high-level control needs of
most applications can be served by new configurations and combinations of existing actors. If an
application has needs that are too radical or undefined to use existing high-level actor controls,
lower-level messages can be sent to existing classes of actors until the desired functionality is clear.
At that point, a new actor class can be derived, and the low-level logic can be moved from the
client to the new actor.

4.3.3 Low-Level Control

Auditory actors can also provide access to arbitrarily low-level parameters of algorithms. Since
actors have access to all parameters of the synthesis algorithms they control, messages can be
provided that simply pass parameters from the client through the actor to the underlying synthesis
algorithm.

4.3.4 Distributed Working Arrangement

We will show how the use of actors allows a generic designer interface to be created, which among
other things, will allow the sound portion of an application to be modified without modifying the
graphical or simulation code.
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Figure 2: System organization.

5 Implementation

5.1 Overall System Organization

This section describes the implementation of a system that incorporates the ideas described above.
This system is built on the client-server model. In this model, the application program which
needs sound is called the client. The client sends requests to the server, which is another program,
usually running on a different computer. The server then fulfills the client’s requests to the best
of its ability (Figure 1).

The system of auditory actors is called Audition. Clients can send messages to Audition,
which is built on top of an underlying synthesis engine, VSS.! Audition handles handles issues
of timing, parameter mapping, and logic, and then sends lower-level messages to VSS to generate
sound. VSS in turn is built on top of a scheduler called HTM.2 This organization is shown in
Figure 2. The server runs on Silicon Graphics Indy or Indigo series workstations.

Audition is implemented in C++, which is a strongly-typed compiled language. As such, it
lacks some features of interpreted object-oriented languages like Smalltalk. Some of these features,
such as run-time checking of argument syntax and method resolvability have been simulated in
Audition. This gives the client many of the advantages of an interpreted language. Since
message-processing is a relatively infrequent and inexpensive task compared to the bulk of the
server’s duties, we retain most of the efficiency of the underlying compiled language.

One advantage of the client-server model is that the client program need not be linked with
a large, complex system. Instead, only the message-passing routines have to exist in the client
application. At present, clients can send messages to Audition from C or C++ modules.

1VSS is a sound server under development at the National Center for Supercomputing Applications.
*HTM was developed by Adrian Freed at the Center for New Music and Audio Technologies, UC Berkeley.
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float handle = AUDInit("InitMsgFile") ;
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update(State);
draw(State);
AUDupdate(handle, "Msg1", stateSize, State) ;

}
QUDterminate(handle) ; j

Msg1 = A_Create, "F", MessageGroup;

Seq = A_Create, "F", SequenceActor;

Add = A_Create, "F", AdditiveActor;

A_AddEvent, "FFFM", Seq, Add, 0, A_BeginNote;
A_AddMessage, "FFMF", Mess1, Seq, A_Active, 1;
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Figure 3: Generic application programmer interface.

There are two ways a client can communicate with Audition. For designers who do not wish
to delve into the intricacies of sound design or the Audition system, a programmer’s interface is
provided that allows the client to set up and use actors while knowing very little about the server
or its capabilities.

Alternatively, the lower level message passing routines may be called directly for finer control.
Details of the organization, actor classes, and message syntax are given in [15].

5.2 Client Organization
5.2.1 Generic Application Interface

In order to use this interface, there are two things that must be done. First, the client must
tell the server which class of actor it wants to use and how it wants that actor configured. This
configuration can include information such as the number of parameters that will be sent with
each update message and how to interpret these parameters. Then, the client sends data to the
actor, either at regular intervals or whenever a state in the application changes. The data is in
a generic form, and consists of an array of floating-point numbers. Figure 3 shows how this is
organized.

Setting up and configuring the actors is done through the use of an initialization file, called
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Figure 4: Auditory actor derivation hierarchy.

InitMsgFile in the Figure. This file contains messages to be sent to the server. If the designer
understands enough about the message format, they can modify this file to change the behavior
of the actors. Otherwise, a number of these files are provided with the system to set up the
Audition system in different ways.

The initialization file will create an actor for the client to use and return the actor’s handle.
This handle will then be used to send messages to the actor. As can be seen in Figure 3, the
client’s actor may create a network of other actors to use in making sound, but the client will only
communicate directly with the one actor at the top of the Figure. In fact, it need send only one
type of message to this actor, which updates the actor as to the state of the client (ABSupdate ()
in the Figure). The actor labeled appActor in the figure serves mainly to interpret the incoming
data, and for more complex applications it may be custom designed.

5.2.2 Explicit Application Interface

Application designers who require more control can explicitly send messages to the Audition
system. Messages are sent by calling message-passing functions which can take a variable number
of arguments of a few simple types (float, character string, float array). No argument checking
is done at compile time, instead each auditory actor dynamically checks the message syntax and
decides if it can fulfill the request. Messages are provided to create, modify, debug, and delete
actors, as well as messages to aid in debugging client communication with the server.

5.3 Server Organization
5.3.1 Actor Hierarchy

The derivation hierarchy of the Actor classes is shown in Figure 4. The arrows in this figure denote
“is a” relationships, so a SampleActor “is a” GeneratorActor which “is a” AuditoryActor, in
the same way that a dog “is a” mammal which “is a” animal. The implication here is that as we
move down a path in the hierarchy, each actor class inherits the characteristics of the class it is
derived from; and then specializes or adds features.

The classes surrounded by dotted lines are virtual classes, which means that they are just there
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to conceptually group together classes derived from them, and the client cannot create instances
of these classes. AudEvents are used by SequenceActors to create sequences of events, and at this
time, the client is not given direct access to them. The client can request Audition to create an
instance of any other class of auditory actor and return a handle. We briefly describe the existing
classes of actors.

Generator Actors Subclasses of GeneratorActor are the only auditory actors that send mes-
sages directly to the synthesis engine to create sound. Each instance of GeneratorActor can be
thought of as a synthesizer, in that it can simultaneously play multiple notes. Messages can be
sent to the actor or to any note currently being sounded by the actor.

FmActor, AdditiveActor, and SampleActor communicate directly with the corresponding
algorithms in VSS. They allow the client (and other auditory actors) access to all parameters
of the underlying synthesis methods, so that low-level control is not lost. The GeneratorActor
class does some parameter remapping, such as allowing the client to set frequency parameters by
using either Hertz (cycles per second) or pitch (a logarithmic measure with reference to a chosen
frequency).

GeneratorActors also generalize certain messages, allowing the client to set parameters which
may not actually exist in the algorithm. For instance, once the frequencies for all partials (si-
nusoidal components) have been specified for a note generated through additive synthesis, the
client may wish to change the frequency of the note. However, a note generated through addi-
tive synthesis does not have a single overall frequency, so ordinarily all partials would have to
be re-specified in order to change the frequency of the note. An intuitive interpretation of the
message is made by assuming that the frequency of the entire note is same as that of the partial
with the lowest frequency. With this interpretation, all the partials’ frequencies are then shifted
logarithmically so the resulting frequency of the lowest partial is the one specified by the client’s
message.

Bell Actors These are actors that implement well-known “recipes” for simulating bell sounds.
FmBellActor uses frequency modulation and an empirical formula by Chowning [16]. AddBellActor
is based on an additive synthesis model by Risset, created from analyses of real bell sounds [17].
For each bell tone, the client can set the pitch, amplitude, and duration independently. A more
intuitive set of parameters might include size, wall thickness, and material composition.

Other models of this type are planned, so that users can easily choose from a library of synthesis
templates. Sampled (recorded) sounds can also be used, but the advantage of parametric models
is that a single model can be tailored to fit a user’s needs simply by setting parameters.

Sequence Actors Many applications need to initiate a series of events whose relative posi-
tioning in time is known in advance. If the events consist either of notes or control information
(pitch change, modulation, etc.), the resulting construct is the familiar MIDI sequencer. The
Sequencelctor is a generalization of this idea.

A SequenceActor is a list of time-stamped events, which are messages sent to actors (it can
even send messages to itself, for instance to change tempo or add events). Any message that the
client can send to an actor can be added to a SequenceActor and then played back later. With
the addition of a few simple classes of actors that generate boolean or numerical responses to
input, SequenceActors can also be used to conditionally send messages.

A problem alluded to earlier was the loss of control when a sequence of events is initiated on
the server. In an interactive graphical application, the frame update rate may vary unpredictably,
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which can cause the graphics to drift out of synchronization with the sound. There are two possible
solutions to this: either the visuals must be forced to match the timing of the sound, or the sound
processes must change tempo to match the visuals.

Since auditory processes are much more sensitive than visuals to tempo changes, it would
appear that the proper approach is to force the graphics to follow the timing constraints imposed
by the sound. This presents implementation difficulties, and would force an unconventional struc-
turing on the client application. For the present, the FollowActor class allows the client to send
metronome messages at each beat, and adjusts its tempo accordingly. As long as the graphical
processes do not distort timing to the point that the rhythmic effects of the sound are lost, this
should suffice for most purposes.

5.3.2 Synthesis Engine

The synthesis algorithms currently implemented are additive and FM synthesis, and sample
playback.? At the heart of any sound generation system, the scheduler makes decisions regarding
the relative priorities of processing control signals versus audio sample generation. The current
system is implemented on top of HTM. This scheduler provides for fast communication between
client and server, as well as taking care of scheduling CPU time for time-sensitive tasks such
as generating samples and servicing client requests. Communication between client and server
is achieved via udp, a fast Ethernet protocol with no error checking. The server and client can
reside either on separate machines or on the same machine.

6 Test Applications

The system was tested by distributing the libraries and documentation to the developers of a
number applications which were shown at VROOM, an exhibit of virtual reality applications
at SIGGRAPH ’94. All of these applications were developed for the CAVE, a projection-based
virtual reality system being developed at the Electronic Visualization Laboratory [18]. THe scope
of the applications ranged from

In all, 39 applications from various disciplines were developed for VROOM. Most of these dealt
with scientific visualizations of data. The time constraints were quite severe, and constituted a
good test of the development time needed by naive users to create an interactive sonic environment.
All development for applications had to be completed within éppfokimately 4 months of approval,
with even less time available for the audio development. Since these were interactive applications
to be experienced by the general public, they had to be robust, which added to the difficulty of
these constraints.

At SIGGRAPH 1992, Showcase 92 also demonstrated (on a smaller scale) several VR applica-
tions, using a sound library that provided a few standard MIDI functions, such as note on, note
off, pitch bend, etc. Briefly, the Showcase 92 system allowed application developers to control
MIDI-compatible synthesizers.

A brief description of three representative applications is now given. A more complete de-
scription of the applications can be found elsewhere [19, 20].

3The synthesis algorithms are being developed by Kelly Fitz and Camille Goudsene (NCSA, UIUC), and the
first author.
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6.1 Evolution of Shape and Sound

This application demonstrates the use of genetic algorithms to evolve shapes and cori‘esponding
musical accompaniment [21]. It was originally shown at Supercomputing ’93 using an early
implementation of some of the organizational ideas presented here. Users evolve shapes and
musical “styles” by picking their favorites out of four that are presented at a time. Users hear
the music associated with the currently picked object.

The sound server is sent a small number of parameters each time a new shape is selected.
These parameters are the surface area, “smoothness,” and other such parameters of the shape.
The interface object on the server is called an Orchestra. An Orchestra object communicates
with a number of Player objects. Each player contains a number of Phrase objects (short
segments of precomposed musical data), and can play variations on them in different orders,
depending on the input. The goal is to parametrically control the stylistic attributes of music in
real-time.

This application was reimplemented in the Audition system, and several improvements will
be made to the rule sets. The original implementation generated its audio output through MIDI,
and this was replaced by real-time synthesis.

6.2 Alpha Shapes

An alpha shape is a generalization of a convex hull, which is a two-dimensional “skin” wrapped
around a cloud of points. This application shows alpha shapes of various sets of points, and uses
audio as well as visuals to depict the propagation of a wave through the shape.

Different features of the wave and its history are mapped to different sound parameters. The
smoothness of the wave and the topological connectivity of the shape are reflected in the amplitude
envelopes of additive synthesis sounds, and the combinatorial size is reflected in the frequency of
the partials.*

6.3 Artificial Life

Artificial life (AL) is a field of growing popularity whose purpose is (usually) to simulate behavior.
In AL, the designer specifies low-level rules, and the high-level behaviors that result are implicit
in the specification. This aspect of AL is termed emergent behavior. In this application, users
can observe and interact with several species of artificial organisms, called Flyers, Skaters,
Aggressors, and Stills (plant-like creatures).

The overall state of the environment will be reflected in abstract rhythms and timbres gener-
ated by a RhythmActor (still under development). Individual creatures will also generate sounds
when engaging in certain behaviors, such as attacking or feeding®.

7 Conclusions and Future Work

The concept of an auditory actor constitutes an organizing principle for the creation of sound in
interactive computer applications. These constructs allow arbitrarily high-level control of sound
structures, while also allowing access to low-level parameters of algorithms.

“The Alpha shapes application is being developed by Ping Fu, Gilles Bourhis, and Robin Bargar (UIUC, NCSA),
Herbert Edelsbrunner and Ulrike Axen (UIUC, Computer Science), and Insook Choi (UIUC, Music and Computer
Science).

SThe Artificial life application is being developed by Terry Franguiadakis and Michael Papka (EVL, UIC), and
the first author.
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The abstraction provided by actors residing on a remote server allows parallel, independent
development between the various parts of the application. In this way, experts in different fields
can collaborate on an application while only needing to understand a limited subset of the whole
application. In addition, improvements and additions to the system of actors need not affect the
client programs.

Several other actors are being developed or designed. Among them are generator actors
for granular synthesis and MIDI. To create patterns, a set of “decision makers” will be created
that will return numerical values based on input and internal state. Examples of these are
random number generators, boolean and mathematical operations, Markov chains, and finite
state automata.

Actors are being designed to create commonly used sounds such as buzzers and musical in-
struments, as well as actors to abstract the functions of devices such as a multi-button mouse or
the wand (a six-degree of freedom pointing device used in the CAVE).

One area that deserves exploration is being able to synchronize either the client or the server
to each other. Since the server is designed to simply and precisely control time, timing functions
for animations could possibly be handled by an actor. Many animations take their timing cues
from the soundtrack, so this would be a familiar mode of working for animators.
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