ADSL: An Auditory Domain Specification Language
for Program Auralization

Dale S. Bock
Department of Electrical and Computer Engineering
Syracuse University
121 Link Hall
Syracuse, NY 13244
Email: dsbock@mailbox.syr.edu

Abstract

ADSL (Auditory Domain Specification Language) is a program auralization specification
language which encourages users to actively diagnose software bugs as opposed to just moni-
toring predetermined known program events. Instead of focusing on individual program lines,
users specify general domains of program information, called tracks, by using a customizable
specification language. Based on the set of component tracks chosen, different sound domains
are heard during program execution. The customized tracks can be refined or enlarged, form-
ing an abstract continuum of auditory information. A preprocessor parses a user’s source
code, compares it with a specification file, and places the necessary audio routines. Tracks
can be modulated by variables or other tracks along various sound dimensions, allowing for a
significant increase in auditory information.

1 Introduction

This chapter describes a methodology that relies on sound to aid programmers in understanding
how a program works, and more importantly, to determine if it is running correctly. The approach
taken is very different from other program auralization aids [1, 2, 3, 4, 5] that require users to map
audio cues to specific program lines. With this system there are no required explicit mappings
between program constructs and their associated auditory signals. Instead, users define auditory
cue sound domains and associate them with entire software functions. Program constructs and
data, along with a high-level component specification file, determine how the sound mappings
are assigned and modulated. Because the sound domains are defined beforehand, a user knows
approximately what to expect and can diagnose potential software bugs by listening for unusual
deviations in a sound dimension, or for the lack or inclusion of certain auditory cues during
program execution. This approach encourages users to actively diagnose software and discover
unknown errors, instead of simply monitoring known events.

The sound domain paradigm lets one use audio in a very natural way. Our dynamic sense of
hearing appears to be well suited to detecting when something does not “sound right.” The ear is
capable of detecting when a single note in an entire symphony is played incorrectly. In contrast,
our visual senses easily ignore misspelled, duplicate, or missing words in a document. Although
most people are unaware of the exact sound of a properly tuned engine, they can often tell when
there may be a problem that requires closer visual inspection. Sounds occurring outside of one’s
ezpectations for an engine (e.g., a rubbing sound) can lead to diagnostic insights. However, these

251



Track Name=Loop

{

1 Track=Status(‘for’):Snd(“for sound”);

2 Track=Status(‘while’):Snd(“while_sound”);

}

Figure 1: Example of a program auralization track used to monitor software loops.

same sounds may be considered within the “normal” range for a different domain context, such
as a car’s braking system.

2 Creating Sound Domains

Because software supplies no auditory diagnostic clues when it executes, it was necessary to
develop an approach that allowed users to create customized sound domains for their software
components. A specification language called ADSL (Auditory Domain Specification Language)
was developed for this purpose.

ADSL is a user-defined language. Its most basic elements are referred to as tracks. A track
contains a list of program constructs and associated audio cues. Conditional run-time constraints,
such as the value of a program variable (e.g., ¢ > 10) can also be included in the track definition.
By analogy, the different sounds produced from an automobile engine or braking system, can be
viewed as types of tracks. We define a program construct as any line or fragment of program
source code. A “Loop” track might consist of for and while statements. This is illustrated in
Figure 1. Other tracks could monitor such things as function calls, input/output, graphical oper-
ations, arithmetic expressions, resource allocation, logical operations, and so forth. Higher level
tracks may be defined to analyze sorting algorithms, object-oriented class invocations, searching
procedures, program typo errors not caught by the compiler (e.g., ¢ instead of &i in C), etc.

The sounds used consist of digitized recordings, synthesized speech, and MIDI (Musical In-
strument Digital Interface) output to a synthesizer. Different tracks will tend to suggest the most
appropriate sounds. Gaver’s auditory icons [6] can be used to form an analogy between program
events and everyday sounds. A “cranking” sound might be used to signal a loop. “Stamping”
sounds could be associated with program assignment statements. Synthesized tones, such as Blat-
tner’s earcons [7] may be more appropriate in cases where a good sound analogy cannot be found
or the high repetition of the event requires fast recognition (earcons are short, rhythmic sequences
of pitches that can be combined to express complex auditory messages).

The sounds within a track domain may be grouped together to form a multilayered information
structure. With this type of grouping, track events form a family of related occurrences, allowing
a user to make comparisons among its members. Once a basic sound is established for a track,
it can be varied across different audio dimensions to supply event data. For example, a “Loop”
track may be denoted by a certain percussive instrument. The rhythmic pattern of this percussive
sound could signify which family event occurred (on each encounter a for loop might produce two
sounds and a while loop just one).

3 Application

Once auditory information tracks have been created, they are used to auralize software in terms of
component sound domains. The sound domains are created by what are called track sets. A track

252



Funl

{

1 Track=ID:Snd(“Funl”);
2 Track=Math;

3 Track=Loop;

}

Figure 2: A component auralization specification. Math and Loop are predefined auralization
track sound domains.

set consists of a group of user-defined tracks assigned to a software component. The particular
combination of tracks in a track set determines the allowable range of sound cues generated when
the auralized component is executing. In this context, we define a program auralization to be a
mapping between software components and track sets.

Component track sets are defined in a specification file. The format is similar to the way
program functions are declared. Instead of writing software functions, users define how the com-
ponent is permitted to auditorially behave (the actual sounds produced depend on the particular
track event activated). This is illustrated in Figure 2. Here, component Funl is being analyzed
in terms of a sound domain consisting of “Math” AND “Loop” tracks. The ID track (line 1)
identifies the beginning of a component with an audio cue. It lets a user know which component
they are hearing when a component auralization becomes active.

A preprocessor realizes a specification file by scanning over a copy of a user’s source code.
It looks for component events that are within the scope of a component track set’s specified
audio domain, and inserts the associated sound mappings when a match is found. The process is
repeated for each auralized component and the modified code is then compiled for execution.

3.1 Refinement -

Depending on how tracks are defined, the domain of a track may be too detailed for a given
application, resulting in an overload of auditory information that can make fault isolation difficult.
For instance, when using a “Loop” track (refer to Figure 1), one might want to auralize a specific
for loop, or only those involving variable i. We introduce the concept of track refinement to deal
with this issue. A refinement changes the domain of a track by imposing additional syntactic
and run-time constraints. By analogy, an automobile’s brake sounds can be considered to be a
refinement of the broader sound domain encompassing the entire vehicle.

Figure 3 depicts several types of track refinement. In line 1, “Loop” track events are limited to
for loops using variable ¢ as an index. Any combination of Boolean operators (AND/OR/NOT)
can be applied. A Limit (Lim) constraint is also supplied. In this case, only the first iteration of
the loop will be auralized. Line 2 contains a conditional refinement. Before the “Graphics” track
audio is heard, variable z must also be greater than five, OR variable y below two. Finally, line
3 demonstrates how a domain can be generalized. The inline sound file “math_sound,” replaces
all other “Math” track event audio. This will notify users when a “math” event has occurred,
without specifying its type (we are raising the abstraction level of information).

3.2 Modulation

Suppose one hears a car horn while driving at night. That single horn sound can supply us with
many types of information. At the most basic level we are simply aware of the event (attention
getting). Using our terminology, this can be viewed as a type of track event. However, more

253



Acknowledgments

I'would like to thank Gary Craig, Amrit Goel, Can Isik, and Dan Pease for their help and support.
I am also indebted to my father, Gary Bock, and sister, Nancy Bock, for their editorial assistance.
Many thanks to Gregory Kramer for giving me a forum and the opportunity to express my ideas.

References

[1] Brown, M. H. and J. Hershberger. “Color and Sound in Algorithm Animation.” IEEE Com-
puter 25(12) (1992): 52-63.

[2] DiGiano, C., R. Baecker, and R. Owen. “LogoMedia: A Sound-Enhanced Programming En-
vironment for Monitoring Program Behavior.” In Proceedings of Human Comp. Interaction—
INTERCHI ’93, edited by S. Ashlund, 301-302. Held in Amsterdam, the Netherlands, April
24-29, 1993. Reading, MA: Addison-Wesley, 1993.

[3] Francioni, J. M., J. A. Jackson, and L. Albright. “The Sounds of Parallel Programs.” In
Proceedings of the Sizth Distributed Memory Computing Conference, edited by Q. Stout and
M. Wolfe, 570-577. Portland, OR: IEEE, 1991.

[4] Jameson, D. H. “Sonnet: Audio-Enhanced Monitoring and Debugging.” In Auditory Display,
edited by G. Kramer, 253-265. Reading, MA: Addison-Wesley, 1994.

[5] Sonnenwald, D. H., B. Gopinath, G. O. Haberman, W. M. Keese III, and J. S. Myers.
“InfoSound: An Audio Aid to Program Comprehension.” In Proceedings of the 28rd Annual

Hawaii International Conference on System Sciences, Vol. II, 541-546. Held in Honoluluy,
Hawaii, 1990. Washington, DC: IEEE 1990.

[6] Gaver, W. W. “Auditory Icons: Using Sound in Computer Interfaces.” Human Comp. Inter.
2 (1986): 167-177.

[7] Blattner, M. M., D. A. Sumikawa, and R. M. Greenberg. “Earcons and Icons: Their Structure
and Common Design Principles.” Human Comp. Inter. 4(1) (1989): 11-44.

256

3

"

i

3

A

Sl

B




