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ABSTRACT

The human ability to recognize, identify and compare
sounds based on their approximation of particular vowels
provides an intuitive, easily learned representation for com-
plex data. We describe implementations of vocal tract mod-
els specifically designed for sonification purposes. The mod-
els described are based on classical models including Klatt[1]
and Cook[2]. Implementation of these models in MatLab,
STK[3], and PD[4] is presented. Various sonification meth-
ods were tested and evaluated using data sets of hyperspec-
tral images of colon cells1 � 2.

1. INTRODUCTION

Sonification of highly dimensional data by directly mapping
data to synthesis parameters is often limited by the lack of
an auditory model that will ensure coherent and intuitive
sonic results. Our exploration of alternatives have focused
upon vocal tract models with the rationale that recognition
and categorization of vowels is a highly developed feature
of human auditory perception. To this end we have imple-
mented a number of vocal tract models including a formant
filter model based on Klatt[1], and a physical model based
on [2]. In this paper we describe the model, its implementa-
tion and its implications in the sonification of complex data.

2. FORMANT-FILTER-BASED VOCAL SYNTHESIS

When identifying dissimilar sounds such as human vowels,
the human auditory system is most sensitive to peaks in the
signal spectrum. These resonant peaks in the spectrum are
called formants (Figure 1). Formant frequencies for human
vowels vary according to the speaker type (man, woman, or
child) and sex (male, female), as well as the type of vowel
uttered. In 1952, Peterson and Barney[5] measured formant
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frequencies of human vowels and suggested control meth-
ods.
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Figure 1: Spectrum of vocal utterance of the vowel /i/ as in
team. The smooth line enveloping the lower spectrum cor-
responds to the vocal tract transfer function. The resonant
peaks of this curve are called formants.

In 1980, Klatt[1] presented a method for vocal synthe-
sis that uses the first few formant peaks as resonant peaks
in a source-filter model3(Figure 2). In his model, he used
spectrally rich sounds as excitation sources. The sources
are then filtered by a bank of resonators (configured either
in series or parallel), whose resonant peaks correspond to
formant peaks of the vowel to be synthesized. The ampli-
tude, bandwidth, and center frequency of each formant peak
play an important role in the simulation of human vowels.

Like Klatt, we have chosen a band-limited impulse train
as an excitation source since, in voiced phonation, glottal

3In the context of vocal sound production, a source-filter model as-
sumes, roughly speaking, that the time-varying air pressure waveform pro-
duced at the glottis is filtered by the vocal tract in order to produce distinct
sounds. The source-filter concept was introduced by Fant[6].
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Figure 2: Klatt’s source-filter model for vocal synthesis. Ra-
diation of the output pressure at the nose and lips to the
environment is not shown.

folds open and close periodically, producing a pulse-like ex-
citation.

As has been mentioned earlier, in addition to formant
frequencies, the amplitude and the bandwidth of each for-
mant peak help determine the quality of the output sound.
This is where formant-filter-based synthesis may be used
in the sonification of highly-dimensional data. For exam-
ple, by mapping the data to the amplitudes and bandwidths
of the formant peaks in a vowel sound, distinct vowel-like
sounds will be produced for different data points. Further-
more, by selecting vowel types whose sonorities are as per-
ceptually distant as possible, and mapping the data between
these sounds, we can maximize the possibility of data clas-
sification via sonification.

3. CASCADED-TUBE-SECTION VOCAL
SYNTHESIS MODEL

The model for sound synthesis that we have chosen is based
on a vocal tract model developed by Perry Cook[2]. The
vocal tract is approximated by a series of acoustic tubes,
each with a distinct length and radius.

The model may be derived as follows:
First, consider a single cylindrical tube with constant

cross-section
�������	��
	��

. With  �	��������� and � �	��������� de-
noting the pressure (in Newtons per square meter) and the
volume velocity (in cubic meters per second) in the tube (re-
spectively) at position

�
and time

�
, it can be shown that the

tube supports wave propagation, with the solutions to the
wave equation yielding

 � ����������� ����� � � � !#"%$ �&�'� � $(� !#" �
(1)

and � � ����������� ����)� � � � !�"*$ ��&�'� � $(� !#" �
(2)

where  � � ,  &� , � � � , and � &� denote the left- and right-going
components of the traveling pressure and volume-velocity
waves (respectively).

It can further be shown that

 � �)� � � � !#" �,+
!
�-� � � ��� �.� � !�" �

(3)

and similarly, for the left-traveling wave component,

 &� � � $ � !#" �/� +
!
��� � &� � � $ � !#" �

(4)

where + is the density of fluid in the tube (in kilograms per
cubic meter),

!
is the speed of sound in the tube (in meters

per second), and
�0�

is the aforementioned cross-sectional
tube area.

If we define the acoustic impedance of the tube as

1 � �2+
!
��� � (5)

then we have the following relations:

 � � � 1 � � � � � (6)

and

�&� �/� 1 � ��&� � (7)

where we have omitted the arguments of the pressure and
volume-velocity functions for convenience of notation.

Thus, we can model wave propagation in a single tube
as a pair of delays (one for the left-traveling wave compo-
nent and one for the right-traveling wave component). The
length of each delay, in seconds, is given by

3#4 � �65 �! �
(8)

where 5 � is the length of the tube (in meters). For a discrete-
time simulation, the number of samples of delay necessary
is thus given by

784 � �:9<; 3�4 � �
(9)

where
9=;

is the sampling rate (in Hz). Note that this value
may well be a non-integer; techniques for simulating a non-
integer delay are discussed in [7].

When a second tube section with different cross-sec-
tional area

� � �/�	��
	�� is joined to the end of the first tube,
the mathematical relationships between the left- and right-
traveling wave components may be derived using the results
stated above:

By conservation of mass, the volume velocity of fluid in
the first tube (flowing into the junction) must be equal to the
volume velocity of fluid in the second tube (flowing out of
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the junction). Thus we may further derive> � � �?� � � (10)� � � � $ � &� � � �� � � &� (11)� @A�=� ��� � #&� � $ @ � � #&� � B�� � (12)� @A�=�C�  � � � ED � $ @ � �C�  &� � �D � (13)F  D � �  � � @A� $ �  &� @ �@A� $ @ � (14)F  &� � ED �  � � (15)� @ � �)@ �@A� $ @ � B�� $ �=@ �@A� $ @ � �&� (16)� 1 � � 1 �1 � $ 1 �  � � $ � 1 �1 � $ 1 �  &� � (17)F  �� � ED �  &� (18)� @ � �)@A�@A� $ @ �  &� $ �<@A�@A� $ @ �  � � (19)� 1 �G� 1 �1 � $ 1 � #&� $ � 1 �1 � $ 1 � B�� � (20)

where � � is the volume velocity in the second tube, ����
and � &� are the corresponding left- and right-traveling wave
components, ED is the common pressure at the junction, and@A�

and
@ � are the acoustic conductances4 in the first and

second tube section (respectively).
If we now define the scattering coefficient H as

H � 1 � � 1 �1 � $ 1 � � (21)

then we can re-write the scattering relations Equation (17)
and Equation (20) as follows:�&� � HI��� $ �KJL� H � #&� � (22)

and B�� �/� H	#&� $ ��J $ H � B��?M (23)

Note the scattering coefficient H may also be written as a
function of the radii of the tube sections:

H � 
	�� ��
I��
 �� $ 
 �� M (24)

By joining additional tube sections to the end of the pair
to form a cascade, we obtain an approximate vocal tract
model. The process is illustrated in Figure 3. The input
to the first tube section (the left-most section in Figure 3)
represents the back of the vocal tract (nearest the glottal
folds), and the output of the last tube section represents the
point where the tract ends (at the lips). The blocks between
the delay elements implement the relations of Equation (22)
and Equation (23), and are known as Kelly-Lochbaum scat-
tering junctions (they occur in wave propagation whenever
there is an impedance discontinuity).

4Conductance N is simply the inverse of impedance O , i.e. NQPSRTGU

Figure 3: Digital waveguide model of the human vocal tract,
with scattering junctions between adjacent tube sections to
account for changing radii (adapted from [2]).

By modifying the radii of (or equivalently, the scattering
coefficients between) the tube sections, the quality of the
output sound that results, when a waveform is applied to the
glottal input, will vary. It is this effect that we hope to take
advantage of: by mapping the data we wish to sonify to the
radii or scattering coefficients of the vocal tract sections, we
obtain a new sonification technique.

One important detail that remains to be discussed is the
nature of the waveform applied to the input of vocal tract
model, or the glottal waveform. In short, the waveform is
well approximated by an impulse train to which a lowpass
filter is applied. More details may be found in [2].

4. HYPERSPECTRAL TISSUE IMAGE DATA

We aim to apply our sonification technique to hyperspectral
images of colon tissue, the collection of which is discussed
in this section.

The tissue images have been collected in cooperation
with the Department of Applied Mathematics at Yale Uni-
versity. First, a series of slides, each slide containing more
than 300 microdots, each microdot corresponding to a slice
of colon tissue (roughly 0.5 mm by 0.5 mm in size) from
a distinct patient, is prepared. Each microdot may corre-
spond to either normal or malignant colon tissue. Next a
slide is chosen and illuminated with a tuned light source
(capable of emitting any combination of light frequencies
in the range of 450–850 nm), and the transmitted image is
magnified 400X by a Nikon Biophot microscope. The mag-
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nified image is recorded with a Sensovation CCD camera.
Several images are taken, each using a different combina-
tion of light frequencies, consistent with a technique known
as Hadamard spectroscopy. The result is an image with 128
values per pixel, each value corresponding to a frequency of
light in the range 440–700 nm (the frequencies are roughly
linearly spaced across the range). Each hyperspectral image
may be referred to as a datacube, with dimensions

�
by V

by 128, where
�

and V are the number of horizontal and ver-
tical pixels in the image. More details may be found in [8],
[9], and [10].

In the study of [10], 15 datacubes of normal colonic tis-
sue and 46 datacubes of abnormal colonic tissue were col-
lected. The dimensions of each datacube are 491 pixels by
652 pixels by 128. In the following sections of this paper,
we focus on two such datacubes (one of benign tissue, the
other of malignant tissue), and illustrate how vocal sonifi-
cation techniques, after data preprocessing, may be applied
to help distinguish the tissue analyzed. Figure 4 shows a
grayscale image of the benign tissue, and Figure 5 shows a
grayscale image of the malignant tissue.
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Figure 4: Grayscale image of benign tissue used for sonifi-
cation experiments.

5. DATA PREPROCESSING

Prior to sonification, several preprocessing steps are applied
to the datacubes:

1. First the 128 dimensions for each point in the image
are reduced to 16 via principal components analysis.

2. Next the 16 dimensions are reduced to 5 using a tech-
nique known as Local Discriminant Bases (LDB) (see
[11] for a general treatment and [10] for details in this
specific application).
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Figure 5: Grayscale image of malignant tissue used for
sonification experiments.

3. Finally, the 5 dimensions are reduced to 3 using a
Nearest-Neighbour Classification technique, again dis-
cussed in [10].

The final result is an image with 3 values per pixel: the
first denoting the probability that the pixel belongs to an
abnormal nucleus, the second being the probability that the
pixel belongs to a normal nucleus, and the third being the
probability that the pixel does not belong to nucleic tissue.
More details may be found in [10].

6. IMPLEMENTATION AND RESULTS

6.1. STK Implementation of Cook’s Vocal Synthesis

To quote the manual, “The Synthesis ToolKit (STK) is a set
of open source audio signal processing and algorithmic syn-
thesis classes written in C++” [3]. STK classes have been
successfully integrated into prior sonification projects (see,
for example, [12]). The STK already contains C++ classes
for vocal synthesis, namely FM synthesis[13] and formant-
filter-based synthesis[1]. However, no class is available for
vocal synthesis using Cook’s cascaded-tube-section tract model
described in Section 3. For this reason, a C/C++ class,
ready for integration into the STK, has been written from
scratch. The class is called VoicTract (cf. the STK
class VoicForm, which performs formant-filter-based syn-
thesis), and has been designed with an interface similar to
other STK instruments.

6.2. Parameter Mapping and Distance Preservation

There are various possibilities for choosing the sonification
mapping W from the data X to the synthesis parameters Y .
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In general we expect this choice to be data- and application-
dependent. However, all good sonification maps should pre-
serve distances between the data; that is, the perceptual dis-
tances between the sounds produced should be proportional
to the distances between the corresponding data points. Math-
ematically, we require Z\[ ����� V �?] Z\^ � W �����_� W � V ��� , for any
two data points

��� V , where Z\[ is a distance in data space
and Z\^ is the perceptual distance in sound space. This re-
lationship ensures that distant data points will be mapped
to sounds that are perceived as being very different, while
nearby data points will be mapped to sounds perceived as
similar. While finding a quantitative distance between data
points is usually straightforward (though often data- and
application-driven), the distance in perceptual space has most
often to be studied empirically[14]. However, once the two
distances are given, the problem of finding a map satisfying
the condition above can be solved mathematically and algo-
rithmically in efficient and optimal ways (e.g. [15], and ref-
erences therein). Another criterion a good sonification map
should satisfy is that it should be easily learned. This con-
straint should drive the selection of the sonification space
and its parameters. As mentioned in the introduction, the
vowel sounds are very natural to the human auditory system
and easily recognizable, which makes them good candidates
for a target sonification space.

In our situation, the data space X is three dimensional
(the coordinates being the three probabilities

�  � � M`M`M � Ba �
described above), and we could naturally map it to the space
of vocal tracts with three segments. We then map the coor-
dinate �b (appropriately rescaled) in X to the radius of thec
th segment. This mapping should preserve the discrimi-

nation between various sets of probabilities, so that differ-
ences between the sounds corresponding to various tissue
types can be heard when sonifying different portions of the
slide. Other sonification mappings are possible (for exam-
ple, mapping the

c
th coordinate in X to the length of thec

th tract, or each coordinate in X onto a different vowel,
with intensity proportional to the value of the coordinate,
etc.), and while the choice described may give a good result
for this particular data, further investigation of the percep-
tual distance properties of the sonification space needs to be
performed to hopefully discover optimal mappings.

6.3. Preliminary Sonification Using Cook’s Model

In the examples of [2], Cook assumes a vocal tract with 8
tube sections, each a single sample of delay in length. Then
an algorithm (described in [2]) is used to determine the sec-
tion radii required to produce various vowel sounds (e.g. the
vowel /i d / heard in the word team, or / e / of the word took).
For our preliminary sonification attempts, we focus on two
vowel sounds: let
IfKfKfL�hg 
 fKf�f � �i
 fKfKf � � j`j`j 
 fKfKf � k�l`m (25)

denote the radii required to produce the sound /i d / of the
word team and let
InonopA�hg 
qn`nop � �r
qnonop � �sjtj`j 
qn`nop � kul`m (26)

denote the radii required to produce the sound /a/ as in fa-
ther. Finally, let
v�hg 
I�w
 �xj`jtj 
 kyl`m (27)

denote the radii chosen for an image point selected for soni-
fication.

As a preliminary sonification attempt, we adopt the fol-
lowing simple map: take the second element  � of the three-
dimensional vector at a given point (this element corresponds
to the probability that the selected point belongs to abnor-
mal nucleic tissue). Then use this value to map linearly be-
tween the two vowel sounds:
v�(��
qfKf�fG�y
 nonop �  � $ 
 nonop M (28)

When a point with a high probability of belonging to ab-
normal nucleic tissue is selected, the vowel /i d / will be pro-
duced, whereas when a point not having a high probabil-
ity of belonging to abnormal nucleic tissue is selected, the
vowel sound /a/ will dominate.

Figure 6 shows a colour image of benign colon tissue,
with the three aforementioned probabilities represented by
the colours red, green, and blue. Similarly, Figure 7 shows
an image of malignant tissue, with the same colour scheme.
Figure 8 shows a spectrogram of the vowel /i d / produced by
our implementation of Cook’s vocal tract model, and Fig-
ure 9 shows a spectrogram of the vowel /a/ produced by the
implementation. Note the difference in the intensity of the
partials for each vowel. These sounds are produced when
red and non-red points (respectively) in either image are se-
lected.

6.4. Sonification via Formant-Filter-Based Vocal Syn-
thesis

We used Klatt’s formant vocal synthesis technique to sonify
the datacubes with three dimensions per pixel (as discussed
above). In order to generate sounds as perceptually distant
as possible, we selected three different vowels that are most
physically distant from each other in the vowel chart by the
International Phonetic Association (Figure 10). In addition,
we assigned each vowel to a distinct speaker type (man,
woman, or child), to increase perceptual distance between
the target sounds. Finally, we generated control parame-
ters for vocal synthesis using a linear combination of three
vowel sounds, whose weights are determined by the data to
be sonified.

In our experiments, we used three formant frequencies
and the fundamental vowel frequency as control parameters,
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Figure 6: Benign colon tissue image, with the 3 probabil-
ity dimensions represented by the colours red, green, and
blue. Note the red sections (indicating abnormal nucleic
tissue) all correspond to non-nucleic tissue, so the mis-
classification in these patches of red is not serious.
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Figure 7: Malignant colon tissue image, with the 3 proba-
bility dimensions represented by the colours red, green, and
blue.
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Figure 8: Spectrogram of the vowel /i z / (as in team), pro-
duced when a point with high probability of belonging to
abnormal nucleic tissue is selected.
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Figure 9: Spectrogram of the vowel /a/ (as in father), pro-
duced when a point with low probability of belonging to
abnormal nucleic tissue is selected.
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Figure 10: Vowels plotted according to the point of primary
obstruction by the tongue and the mouth during the articu-
lation of the vowel sound (from the International Phonetic
Association).

and we chose three vowel types: the male /i/, the female /a/,
and a child’s /u/. Then we have9I{|�  � 9 { � } n_~ � � b � $  � 9 { � �#��} no~ � � n � $ �a 9 { � � p b�� 4 � ���	� (29)9=���  �`9 � � } n_~ � � b � $  � 9 � � �#��} no~ � � n � $  a 9 � � � p b�� 4 � ���	� (30)9 � �  �`9 � � } n_~ � � b � $  � 9 � � �#��} no~ � � n � $  a 9 � � � p b�� 4 � ���	� (31)9 a �  �`9 a � } n_~ � � b � $  � 9 a � �#��} n_~ � � n � $  a 9 a � � p b�� 4 � ���	� � (32)

where
9 {

is the fundamental frequency that determines the
pitch,

9 b is the
c
th formant frequency,

9 b � ;C�tf no� fK� � �o��� f � is
c
th

formant frequency for a speaker of type speaker uttering
the vowel vowel, and the �b s are given by the aforemen-
tioned probabilities for a selected pixel. Using the above
data mapping to control paramters for vocal synthesis, we
could have three different criteria in the auditory domain
that could help us classify multi-dimensional data. For ex-
ample, with  �Q�2J

and  � �  a � >
, we would gener-

ate the pure sound of a man’s /i/, and we could conclude
with great confidence that the data belongs to the appro-
priate class. On the other hand, sonifying the data with ��� > �  � � > M � and  a � > M � would result in a sound
between a woman’s /a/ and a child’s /u/, but closer to the
latter, from which we could classify the data point accord-
ingly. It is also possible to control other parameters such as
amplitudes and/or bandwidths of formant peaks.

The spectra of Figure 11 show some examples of syn-
thesized vowels using the above data mapping method.

7. CONCLUSIONS

Initial experiments with a variety of vocal tract models sug-
gest that human ability to easily identify vowel-like sounds
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Figure 11: (a) Spectrum of the vowel /a/ (as in father) as
uttered by a woman, produced when a point with high prob-
ability of belonging to normal nucleic tissue is selected. (b)
Spectrum of the vowel /i/ (as in team) as uttered by a man,
produced when a point with high probability of belonging
to abnormal nucleic tissue is selected.

is promising for intuitive sonification. Our experiments with
formant-filters and a physical model of the vocal tract pro-
vide a rich domain for sonification with the principle benefit
of producing sounds that the human auditory system is in-
nately constituted to recognize and distinguish. This feature
addresses the need for intuitive sonification paradigms in
which many dimensions contribute to a particular categor-
ical class of sounds. The human ability to recognize mul-
tiple simultaneously sounded vowels [16] further suggests
the potency of vocal-like sounds for sonification [17]. The
implications for sonification are broad and we continue to
explore the benefits and challenges of this approach.
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