
Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, USA, July 6-9, 2003

NeMoS: NETWORK MONITORING WITH SOUND

Delfina Malandrino, Daniela Mea, Alberto Negro, Giuseppina Palmieri, Vittorio Scarano

Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”
Universit̀a di Salerno

84081, Baronissi (Salerno), Italy
{delmal,alberto,palmieri,vitsca }@dia.unisa.it

ABSTRACT

In this paper we present NeMoS, a program written in Java that
allows monitoring of a distributed system with sound. The archi-
tecture is client/server: the server collects (by polling via SNMP
[16]) data from the monitored Network Components and the client
plays accordingly. The sonification technique associates events (as
defined by the user) to MIDI tracks.

Our system is versatile (several channels of events can be cre-
ated and used), easily configurable (personalization of events and
tracks is offered to users), standard (it fits within the framework
described in RFC 2570 [5]), distributed (multiple clients can be
anywhere in the system) and portable (using Java as Programming
Language).

1. INTRODUCTION

Distributed computer systems are nowadays the most widespread
architecture in computer science. Efficient and reliable services
are given to users by leveraging on the inherent fault-tolerance and
redundancy that is provided by the distributed hardware and soft-
ware architecture of the system. It is, therefore, crucial to offer
timely information about the status of the services. The task is par-
ticularly complex, at least as much complex as the heterogeneous
nature of all the services in the network: e-mail, web servers, file
sharing, CPU (over different machines), printers, routing, naming
services (DNS), etc.

The monitoring and management of distributed systems is well
recognized as a key issue in the industry: many resources are de-
voted in a company to make the system work ”around the clock”.
Several important and complex solutions are provided by major
software companies, such as Computer Associates (Unicenter) [15],
HP (OpenView) [19] and IBM (Tivoli) [9].

In this paper we describe a prototype, NeMoS, that is able to
monitor the behavior of distributed systems by representing with
the sound the information provided by the Simple Network Man-
agement Protocol, a well-known and widespread standard for mon-
itoring devices on the network.

We argue in this paper that it is really important to complement
visual feedback to the system manager by audio information: soni-
fication of the system provides an effective, efficient and unobtru-
sive way to monitor inreal-timethe behavior of the system. Very
often, the attitude of any manager is “No news, good news” i.e. if
nothing is signalled to the manager1 it means that everything is ok.
In other words, the management isproblem-centeredand does not
provide information of the ongoing activities of the system. This

1using automatic systems, such as e-mail, SMS, pager or simply by
angry phone call by users!

kind of information can be critical in anticipating problems so that
prompt action can be taken by the system manager to anticipate
malfunctioning and/or fine-tune the system.

Sonification, i.e. the usage of non-speech audio to convey in-
formation, is particularly useful when there is an abundance of
data to be considered. While sonification of data is not new (the
“ticking” of a Geiger counter as well as sonars are well known),
sonification is a technique used successfully in several contexts.
For example, sonification can be used to allow blind scientists to
examine experimental data via an auditory presentation (as for in-
frared spectrographic data [14]).

More relevant to our field is another application of sonifica-
tion, i.e. the usage of sound to monitor the behavior of a computer
system. As a matter of fact, numerous anecdotes report several ex-
amples of very early monitoring by sonification. A first example
can be the monitoring of a garbage collector in an early prototype
computer Olivetti 9104 at the IAC (Istituto per le Applicazioni del
Calcolo of the Italian Council of Research (CNR)): sounds with
different tones indicated the memory regions where the garbage
collector was working [1]. As another example of early usage we
can cite the first business oriented computer, named Lyons Elec-
tronic Office (LEO) [11]. This machine had a speaker that allowed
the programmers (used to certain frequency variations) to monitor
programs and detect if something was wrong.

Entirely devoted to network monitoring, SoundWIRE [6] is a
utility for measuring the reliability of bidirectional network con-
nections by the sonification of an enhanced ”ping” between a pair
of hosts. The internet connection itself is converted into a vibrat-
ing acoustic medium, producing a resonating tone which can be
understood according to musical criteria: for example, the pitch
shows the roundtrip time (RTT) while stability of pitch indicates
regularity of service and lost packets create pops and distortions.
A listener can easily detect even very subtle changes to QoS.

As another successful usage of sonification for monitoring a
rather complex environment, we can cite ShareMon system [7] that
conveys status information of a server in the background using
subtle metaphorical sounds (such as a knocking sound as a login
on the server).

As last example of previous work in this area, we briefly de-
scribe Peep [10]. It is the only work (that we are aware of) that
monitors complex systems, dealing with multiple and heteroge-
nous data sources. Particularly interesting is their musical choice:
they provide a mapping of events to ”natural” sounds (like birds,
crickets, etc.). As we will say later, we agree with their choice
of an abstract ”musical” representation of data since it makes the
usage of auditory peripheral information possible for a long time.
Their architecture is based on clients (daemons that collect infor-

ICAD03-251



Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, USA, July 6-9, 2003

mation) and servers (that play the sounds). We compare NeMoS
and Peep in Section 5.

2. NeMoS: REQUIREMENTS AND DESIGN

The design of NeMoS was based on the main requirement to pro-
vide peripheral, on-line and configurable information about the
state of several components of a (possibly) large distributed sys-
tem by using the sound. Current systems, in fact, offer real-time
monitoring of a network but they limit themselves to page people
when something seems to be going awry. NeMoS’ characteristics
reverts the approach: sound is used as peripheral information and
provides a musical background to everyday activities so that the
system manager can listen to the monitored components.

Another important characteristics of NeMoS’ sonified inter-
face is that it allows monitoring different parts of the same network
system at once: the information are merged into a single musical
flow thus representing the whole state of the part of the system
the system manager is interested in. At the same time, it is easy
to shift the focus of our system to different (previously defined)
aspects that require attention by the system manager.

In fact, the system manager can configure different channels
consisting of a number of events to be monitored for a specified
Network Component. Each event is associated with a track (or
multiple tracks) of a MIDI file chosen (and configurable) by the
user for each channel. NeMoS can monitor two different types of
events with two different musical representation: simple (digital)
events such as a printer in “No paper” status, or a measurement be-
ing above a predetermined threshold; complex (oranalog) events
that correspond to the increasing value of a measurement whose
representation is a set of MIDI tracks that are played (according to
the configuration) as the value increases.

3. NeMoS ARCHITECTURE

3.1. A standard framework

NeMoS follows the “Architecture of the Internet Standard Man-
agement Framework”, as described in RFC 2570 [5]. The main
components of this architecture are: Network Components (i.e. the
monitored network element), Agents, Network Management Sta-
tions (NMSs), Management Information Bases (MIBs), and finally
the Network Management Protocol (SNMP) that allows the trans-
mission of the managed information between Agents and NMSs.

On each managed Network Component there is a software
module (called Agent) that collects and stores local management
information. The NMSs are usually workstations that show graphic
information about the monitored events. On each NMS there is
a software module, called Manager, that deals with the commu-
nication with the Agents on the managed Network Components.
Information is collected either actively by the Manager, through
the polling of the Agents, or passively, throughtraps sent by the
Agents. The communication between Agent and Manager usually
occurs via SNMP.

The objects that contain management information are stored,
by each Agent, in a special database called Management Infor-
mation Base (MIB): the MIB of a router, for example, maintains
information about its routing table, the MIB of a printer maintains
information related to its state (low toner, no paper, printing, paper
jammed, etc.). Several RFCs2 describe the standard MIB for Net-

2In the rest of the paper we will refer to standard identifier for MIB
objects referred in these RFCs by usingtypewriter font.

work Components (i.e. routers) [13], hosts [8] and printers [18].
Any MIB is a collection of objects which define the properties

of the managed object within the device to be managed. The set
of defined object has a tree structure. The Object IDentifier (OID)
of an object in the MIB is the sequence of non-negative Integer
value traversing the tree to the node required. Then, to read the
value of objects in a MIB one mustbrowse(navigate) the MIB
tree structure until reaches the desired identifier on a leaf.

Many are the commercially available Network Monitoring Sys-
tems based on this framework, such as ActiveSnmp [17] and HP
OpenView, but they are strongly based on a visual interface.

In this context, NeMoS is a Network Monitoring System that
uses a audio interface rather than a visual one. NeMoS uses SNMP
as Management Protocol that is, at the moment, the most popular
Management Protocol on Internet. SNMP is an application-layer
protocol designed to facilitate the exchange of management infor-
mation between network devices. By using SNMP, system man-
agers can more easily manage network performance, find and solve
problems, and plan for a smooth system growth.

3.2. NeMoS’ Overview

NeMoS’ client-server architecture consists of two components: Ne-
MoSServer and NeMoSClient. The NeMoSServer manages the
communications with the Agent of the monitored Network Com-
ponents to obtain the management information and then send them
to the NeMoSClient. The NeMoSClient analyzes the information
received and produces the sound. It also provides a simple user
interface to show the monitored Network Components and browse
their MIBs.

A client plays accordingly to events that occurs. Aneventcon-
sists of: the hostname (Fully Qualified Host Name or IP address)
of the Network Component, a variable to monitor (from a spe-
cific object of the MIB), an (optional) threshold (or value), some
(optional) parameters and a MIDI track associated. Depending
on its nature, the event is triggered (and the corresponding MIDI
track played3) if the variable has reached a given value (or passed
a given threshold). As an example, one can monitor if the CPU
load of a given machine (hrSWRunPerfCpu ) is over 20% by us-
ing the appropriate variable in the MIB and setting the threshold
to 20. As another example, one can define the event as a value of
the variabletcpConnState that represents the state of the TCP
connection on a specific network interface (as first parameter) and
with a specific TCP port (as second parameter): for example the
value 2 indicates that the connection is inListenstate.

We have also included analog events by grouping several iden-
tical MIDI tracks to an event where we define a starting valuev
(when reached, the first MIDI track is played) and a step values:
every time the variable reaches valuev + i · s then the firsti + 1
MIDI tracks are played together. The effect is as acting on the
volume by having several tracks playing at once.

By using the GUI of the NeMoSClient, the system manager
can create (and later modify or delete) several channels. Achan-
nel is built by putting together several events and associating an ap-
propriate MIDI file. To facilitate channels’ composition, we have
grouped the events that can be monitored in categories according
to the nature of the Network Component and/or the nature of the
information to monitor. There are seven categories: Security, Net-
work, Host Resources, Processes, TCP and UDP Services, Device

3The track is played until new information reaches the client, i.e. every
second.

ICAD03-252



Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, USA, July 6-9, 2003

Status and Printers.

We also provide some events whose value is evaluated by us-
ing different MIB variables: for example the percentage of “ICMP
Echo Request” message received is evaluated with respect to the
total number of ICMP messages received, i.e. (icmpInEchos
over the total number of packetsicmpInMsgs ).

The system manager can compose several channels that are
saved in a configuration file (so that they are automatically reloaded
at startup by the NeMoSClient), modify them, and choose which
one to play and easily switch among channels.

3.3. Architecture Components

NeMoS architecture is client-server and here we describe, with
more details, its components. They are all written in Java and
therefore our application is extremely portable.

NeMoSServerconsists of two modules: theNetManagermodule
and theTrapdmodule. The former performs the network discovery
at start-up, and manages all connections with the clients; the lat-
ter waits for traps generated by the Agents. When a NeMoSClient
issues a request connection, theNetManagerchecks, first, if the
client is authorized, and then, if it is the case, initiates the connec-
tions. TheTrapd module in the NeMoSServer receives the traps
from Agents and sends the proper information to each client that
has established a connection with the NeMoSServer. The client
will show the trap by a visual message with a loud beep4.

By using a parameter (i.e.-nd ) on the command line, the Ne-
MoSServer initiates a network discovery whose parameters (max
number of hosts, max depth, etc.) are stored in a configuration file5

nms.conf . Once finished the (potentially long) network discov-
ery, all the information on the discovered Network Components
are stored in a filenetMap.conf so that it will be available next
time the NeMoSServer is started without the parameter-nd .

NeMoSClient main goal is receive data from the server and play
accordingly. It also provides a GUI to create, modify or delete
channels. Moreover the client provides a GUI that allows the user
to browse MIBs of the Network Components.

The NeMoSClient consists of two modules, theNetBrowser
and theEventsPlayer. The first module allows the MIB brows-
ing on a Network Component while the second, theEventsPlayer,
sends to theNetManagerthe channel chosen by the user. Then
the NetManagerperforms the continuous polling of the MIB for
the value of the objects and regularly sends back the results to the
EventsPlayer.

TheEventsPlayermodule is also in charge to play the sounds
related to the monitored events by using the Java Sound API. When
the user chooses the channel to monitor, theEventsPlayerinstanti-
ates a new module, theEventsCollector, that deals with receiving
and storing the results in a format that facilitates the computation
of the statistics by theStatisticsMakermodule that communicates
back to theEventsPlayer(each second) the MIDI tracks to acti-
vate.

4SNMP traps (included in our system only for completeness) are really
rare and serious events (such as shutdown/restart of a computer) and there-
fore do not fit well in NeMoS objectives of background monitoring of a
live system by musical representation.

5Other configuration parameters, such as the IP addresses of authorized
NeMoSClients, are stored in this file.

4. CASE STUDY

Here we report our experience on using NeMoS in our Depart-
ment. We first describe the criteria for the choice of the MIDI
tracks and later describe some example configurations of the chan-
nels.

4.1. Peripheral Information through Music

Monitoring distributed systems is usually a task that is performed
in the background of other activities. NeMoS offers to system
managers information delivered by sound in such a way that they
can ”feel” the behavior and promptly recognize anomalies. As
a matter of fact, several studies [2, 7] recognize the importance
of peripheral information (i.e., information not critical but poten-
tially useful nevertheless [12]) when it is delivered through sound,
since sound can be effective in conveying additional information
[3] while not taking precious screen space.

As a consequence, we decided to use NeMoS with MIDI files
that can effectively generate “background music”. In our previ-
ous experience in the sonification of a Web Server [3, 4] we found
a useful combination of MIDI tracks that represented a musical
structure that is neutral with respect to the usual and conventional
musical themes. In fact, the goal was to make possible to hear the
music generated for a long time, without inducing mental and mu-
sical fatigue: well-identifiable musical patterns repeated for a long
time can provoke the psychological rejection of the information
provided by our tool. As a consequence, we tried to avoid to con-
figure harmonic-tonal fields as well as rhythmic references that are
potentially able to attract the focus of the users by leveraging on
their mnemonic and musical (personal) capabilities. Therefore we
leave to timbre and duration the task to represent the information
making usage of neutral and somewhat unusual MIDI timbres.

4.2. Some example channels

We describe the configuration of some channels that we have used
to monitor the distributed system in our Department. The core of
our system is mainly based on 3 servers: 2 applications and file
servers (Linux and Windows Terminal Server) where users6 log in
and run their applications and a Digital Unix server for services as
mail, DNS, WWW, FTP, etc. There are several workstations/PCs
(around 40-50), three network laser printers (one is a color laser
printer) and a router for the connection to the rest of our University
network. The monitoring required must address traditional issues
such as early detection of malfunctioning and preventing possi-
ble problems. In the first category we found useful to monitor
printers malfunctioning (such as paper jammed, no toner, no pa-
per), disconnection of the network with the University network and
servers’ problems (such as low disk space for file servers). In the
second category, we were interested in preventing malfunctioning
(i.e. printers with low toner or low paper, or unusual CPU/memory
load on servers) as well as preventing possible malicious attacks
such as “denial of service” attacks by IP flooding (that, for exam-
ple, can be recognized by monitoring the router).

The MIDI file that we used was designed according to the con-
sideration in the previous subsection. The Tracks 1 to 8 uses timbre
BowedGlass(timbre 93 of the MIDI standard), track 9 usesWood-
block (timbre 116), track 10MusicBox(timbre 11) and track 11 a
very recognizableTimpani(timbre 48). The idea is that tracks 1 to
8 can be used either for analog events (expressing the increasing

6Users are researchers, faculties and PhD students of the Department.

ICAD03-253



Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, USA, July 6-9, 2003

load, for example) or to monitor a combination (a logical OR) of
digital events (any printer without paper, for example). Tracks 9,
10 and 11 are used for digital events that must be easily recogniz-
able.

We configured and used several example channels. We report
here, for brevity, only some of them i.e. thePrinterschannel and
System loadchannel. ThePrinters channel monitors by tracks 1
to 6, respectively, the three network printers for the two condi-
tions “Low Paper” (hrPrinterDetectedErrorState with
the 7th bit set) and “Low Toner” (hrPrinterDetectedEr-
rorState with the6th bit set). On tracks 9, 10 and 11 we mon-
itor the “Printing” state (hrPrinterStatus equals to 4), map-
ping track 11 (the recognizable louderTimpani) on the laser color
printer, whose usage should be consistently less frequent (given
the cost per page).

TheSystem loadchannel monitors the load of the 2 application
servers, respectively, on tracks 1 to 4 and 5 to 8. On track 9 we
monitor when the percentage of used file on the file server goes
above a threshold (in our example, 50%). On track 10 we monitor
the percentage of “ICMP Echo Request” (icmpInEchos over
the total number of packetsicmpInMsgs ) received by the host
(to recognize flooding denial-of-service attacks) and, finally, on
track 11 we placed the (critical) event “Interface is Down” (ifOp-
erStatus ) on the router.

Our experience of using NeMoS is that a certain tuning is nec-
essary, especially when thresholds are to be determined: for exam-
ple what is a “normal” level of CPU load during the day, what is
the “usual” disks occupancy, etc. In this context, precious is the
configurability and personalization offered by NeMoS as well as
the possibility to configure (and easily switch among) many differ-
ent channels.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented NeMoS, its architecture and application
to a real case. The sonification technique for monitoring complex
systems seems to be a promising complementary tool to the usual
visual interface.

While several applications of sonification were developed to
monitor specific services [6, 7, 3] our goal is to develop a frame-
work to include sound as a possible interface to monitorall the
components of a network that can be usually monitored via the
standard Internet Standard Management Framework (RFC 2570
[5]) and its communication protocol SNMP.

The only previous work that had the same all-encompassing
objective as ours is Peep [10]. The main substantial differences
between Peep and NeMoS lie in our usage of a standard protocol
such as SNMP. This characteristics, in fact, allows NeMoS to mon-
itor for devices (such as network printers or routers) that cannot be
monitored by Peep, since its “monitors” are to be executed as dae-
mons on the machine and, therefore, require both programmabil-
ity of the device7 and accessibility to the machine (you must own
enough privilege to run programs on the node). As a second con-
sequence, NeMoS does not require programming (at least in the
current configuration, see later in this section) and is easily con-
figurable/personalizable. Another consequence is the fine-tuning
of the parameters that can be monitored: an example can be the

7You cannot execute daemons on a printer and the trick of monitoring
printer queues on a host does not monitor the effective usage of a network
printer (i.e. with multiple machines using it).

ability to monitor (provided by SNMP) when somebody is putting
paper on the printer and when the toner is low.

Future work on NeMoS include several directions: first of all,
we are planning to include the MIBs for explicitly monitoring mail
servers and WWW servers (by using RFCs 2789 and 2594). Then,
we would probably work toward offering an environment to inde-
pendently develop plug-ins (i.e. adding new MIBs) for NeMoS.
Finally, an interesting step would be using an applet as a client in
order to allow sonified remote monitoring via a universally avail-
able interface such as a web browser.

6. REFERENCES

[1] Giorgio Ausiello, Private communication as reported by Alberto
Marchetti Spaccamela.

[2] Buxton, B. (1989). Introduction to this special issue on nonspeech
audio. Human-Computer Interaction, 4, 1-9.

[3] M. Barra, T. Cillo, A. De Santis, U. Ferraro Petrillo, A. Negro, V.
Scarano. ”Personal WebMelody: Customized Sonification of Web
Servers”. Proceedings of the International Conference on Auditory
Display (ICAD), 29 July - 1 August 2001, Espo, Finland.

[4] M. Barra, T. Cillo, A. De Santis, U. Ferraro Petrillo, A. Negro, V.
Scarano. ”WebMelody: Sonification of Web Servers”. Poster Pro-
ceedings of the 9th Int. World Wide Web Conference(WWW9), May
15-19 2000, Amsterdam(Netherland).

[5] J. Case, R. Mundy, D. Partain, B. Stewart. ”Introduction to Version
3 of the Internet-standard Network Management Framework”, April
1999. RFC 2570.

[6] C. Chafe, R. Leistikow. ”Levels of Temporal Resolution in Sonifi-
cation of Network Performance”. Proceedings of the 2001 Interna-
tional Conference on Auditory Display, July 29 - August 1 2001
Espoo, Finland.

[7] Cohen, J. ”Monitoring background activities.” In G. Kramer (Ed.),
Auditory display: Sonification, audification, and auditory interfaces.
Reading, MA: Addison-Wesley, 1994.

[8] P. Grillo, S. Waldbusser. ”Host Resources MIB”, September 1993.
RFC 1514.

[9] ”IBM Tivoli Monitoring for Network Performance”
http://www.tivoli.com

[10] M.Gilfix, A.Couch. ”Peep (The Network Auralizer): Monitoring
Your Network with Sound”. Proc. of 14th System Administration
Conference (LISA XIV). Dec. 3-8, 2000, New Orleans (LA) USA.

[11] ”Lyons Electronic Office”.
http://is.lse.ac.uk/Leo/HistoryCDLEO.htm

[12] Maglio, P. P. Campbell, C. S. (2000) ”Tradeoffs in the display of pe-
ripheral information”, in Proceedings of the Conference on Human
Factors in Computing Systems (CHI 2000).

[13] K. McCloghrie, M. Rose. ”Management Information Base for Net-
work Management of TCP/IP-based Internets: MIB-II”, March
1991. RFC 1213.

[14] Lunney, D., Morrison, R.. ”High technology laboratory aids for vi-
sually handicapped chemistry students”. Journal of Chemistry Edu-
cation 58, 228 (1990).

[15] ”Network and Systems Management”
http://www3.ca.com/Solutions/

[16] ”Simple Network Management Protocol”.
http://www.snmp.org

[17] ”SNMP network management application”
http://www.cscare.com/ActiveSNMP/

[18] R. Smith, F. Wright, T. Hastings, S. Zilles J. Gyllenskog. ”Printer
MIB”, March 1995. RFC 1759.

[19] ”Software Management HP openView”.
http://www.openView.hp.com

ICAD03-254


