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ABSTRACT 

Historically, many sonification designs that have been used 
for data analysis purposes have been based on data 
characteristics and have not been explicitly based on the 
listener’s task. These sonification designs have often been 
described as annoying, confusing, or fatiguing. In the absence 
of a generally accepted theoretical framework for sonification 
design, there is a need for improvements in sonification 
design as well as a need for empirical evaluation of task-
based sonification designs. This research focuses on surface 
electromyography (sEMG) sonification and two sEMG data 
analysis tasks: determining which of two muscles contracts 
first and which of two muscles exhibits a higher exertion 
level. Both of these tasks were analyzed using a task analysis 
technique known as GOMS (Goals, Operators, Methods, 
Selection Rules) and two sonification designs were created 
based on the results of these task analyses. Two Data-based 
sEMG sonification designs were then taken from the sEMG 
sonification literature, and the four designs (2 Task-based and 
2 Data-based) were empirically compared. Significant effects 
of sonification design on listener performance were found, 
with listeners scoring more accurately using the Task-based 
sonification designs. Based on these results, we argue for 
wider application of task analysis methods to sonification 
design and for the inclusion of task analysis methods into a 
generally accepted theoretical framework for sonification 
design.  

1. INTRODUCTION

The auditory display community has known for quite some 
time that designing effective data sonifications is no small 
endeavor. A report published in 1999 highlighted the need for 
a sonification design method in order to establish a theoretical 
foundation upon which to base sonification designs [1]. 
Additionally, at the first ICAD conference in 1992, Sarah Bly 
referred to the lack of a theory of sonification as “a gaping 
hole impeding progress in the field” [2]. While strides have 
certainly been made since then towards establishing theories 
and guidelines for sonification design [3] [4] [5] [6] [7] [8] 
[9], a generally accepted sonification design framework, or 
theory of sonification design, still does not exist (S. Barrass, 
D. Brock, M. Gröhn, B. Walker, D. Worrall, personal
communication, July 3, 2016).

Arguably the most common type of sonification design in 
use today is parameter-mapping sonification, in which various 
parameters of sound (i.e. pitch, loudness, spatial location, 
timbre, etc.) are mapped onto data trends over a certain range 
and polarity. While this method of sonification can be 
effective for certain applications, it tends to result in 
sonifications that are annoying [10] [11] [12], confusing [13] 
[14], or fatiguing [15] [16].  Another problem with parameter-
mapping sonification is that perceptual entanglement of 
various auditory parameters can lead to changes in one 
auditory dimension being perceived as changes in a different 
auditory dimension, which can obscure the meaning of a 
sonification [13]. This perceptual entanglement of various 
auditory parameters has led to what is known as The Mapping 
Problem, which is generally considered to be one of the 
primary obstacles currently facing sonification research [17].   

Roddy and Furlong have proposed that improvements in 
sonification aesthetics could help to solve The Mapping 
Problem [18]. Sonification aesthetics have been understood in 
a variety of different ways over the years [9], and one 
important finding is that aesthetics and function cannot be 
treated independently in auditory display [10]. Building on 
this idea, Roddy and Furlong argue that sonification aesthetics 
deals primarily with meaning-making, and not with the 
overall “niceness” of the sound (which Roddy and Bridges 
refer to as sonification “cosmetics” [19]). Roddy and Furlong 
propose that looking to embodied cognition and creating 
sonifications that are mapped along embodied schemata may 
help listeners to derive the intended meaning from the 
sonification, and thus improve the aesthetic framework of the 
sonification. Embodied schemata are gestalt-like frameworks 
derived from the recurrent perceptual patterns encountered in 
daily life and they form the basic units of cognition. By 
mapping sonifications along these embodied dimensions, 
Roddy and Furlong argue that it could be possible to 
reconfigure entangled auditory dimensions into more 
comprehensible channels, thus circumventing The Mapping 
Problem and making sonifications that are more meaningful 
and easily understood [18]. The challenge they identified to 
this approach, however, is that the question of how to map 
specific embodied schemata to specific sonification tasks is 
not well understood.  

Indeed, little research in general has been performed 
looking at how to design sonifications for specific tasks. This 
is due, in part, to the fact that many sonifications have not 
been explicitly designed to be tailored to the listener’s task. 
Historically, many sonifications have been designed based on 
characteristics of the data being sonified (such as the type of 
data, number of data dimensions, number of data points etc.) 
[8], coupled with the designer’s intuition [20] [21]. 
Additionally, many sonification designs to date have not been 
empirically evaluated [22], further compounding the 
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problematic lack of understanding regarding how to design 
sonifications for specific tasks.  

While a number of researchers have discussed the 
importance of considering the task when designing a 
sonification [3] [5] [6] [23] [24] [25] [26], few have discussed 
in significant depth how to go about understanding the 
listener’s task using task analysis techniques (with the notable 
exception of Barrass’s dissertation [3]). Seemingly fewer still 
have created sonification designs that were based on a task 
analysis, and to date, we are not aware of any empirical 
evaluation of task-analysis-based sonification designs.  

One recent study investigated the effects of sonification 
design on listener performance for two different sEMG data 
evaluation tasks [27]. Results showed that one sonification 
design (Pitch/Loudness) yielded the most accurate listener 
performance for the first task (identifying which of two 
muscles contracted first), while a different design 
(Pitch/Loudness/Attack time) yielded the most accurate 
listener performance for the second task (identifying which of 
two muscles exhibited a higher exertion level).  

Given this finding that sonification design efficacy was 
task-dependent, it seemed a natural progression to begin 
investigating task-specific sonification designs. This was done 
by using task analysis methods as a means for establishing 
sonification design criteria.  

This paper presents the results of this investigation into 
task-based sonification designs which involved:  

• Identifying an appropriate task analysis technique 
that would provide the needed information 

• Performing task analyses of the two sEMG data 
evaluation tasks used in the study 

• Creating two sonification designs based on the 
results of these task analyses 

• Comparing these Task-based designs to two Data-
based designs taken from the sEMG sonification 
literature  

2. TASK ANALYSIS AND GOMS 

A task analysis is a design tool commonly used in fields such 
as Human Factors and Human Computer Interaction [28] 
[29]. Its purpose is to provide knowledge about users, their 
goals in accomplishing a task, their environment, the manual 
elements of the task, the cognitive elements of the task, the 
tools used to perform the task, the duration, order, and 
complexity of the task, as well as any other unique factors 
pertaining to the task [30].  

The idea of using task analysis techniques to inform 
sonification design is not new, as previously mentioned. 
Barrass discussed the use of task analysis methods at length 
as part of his TaDa framework for sonification design [3]. 
Anderson also proposed the incorporation of task analysis 
methods into a framework for sonification design [5]. Walker 
and Nees stated that effective sonifications will require an 
understanding of the listener’s function and goals within a 
system, that the task is a crucial consideration for the success 
or failure of a sonification, and that a display designer’s 
knowledge of the task will constrain and inform the design of 
a sonification [6].  

One issue we have not seen addressed in the sonification 
literature, however, is a discussion regarding what type of 
task analysis technique to use for informing sonification 
design. Many types of task analysis techniques have been 
developed, and each technique provides the designer with 
somewhat different information. One broad way to categorize 
the many different types of task analysis methods is to divide 

them into action-oriented methods and cognitive methods 
[31]. Action-oriented methods (such as the commonly used 
hierarchical task analysis, or HTA) focus on observable 
actions, or identifying, in top down fashion, the goal of the 
task, as well as the various subtasks and conditions under 
which those subtasks must be performed in order to achieve 
the goal. Cognitive methods, on the other hand, focus on 
analyzing and outlining the unseen mental processes – 
diagnosis, decision making, problem solving, etc. – that can 
give rise to human error [31].   

Based on this categorization, it at first seemed reasonable 
to take a cognitive approach to task analysis for use in 
informing sonification design, since comprehension of a 
sonification does not depend on observable actions, but 
rather on unseen mental operations. However, formal 
cognitive task analysis (CTA) methods may not be feasible 
for use in sonification design due to the fact that they 
typically require observation of expert performance, 
interviews with subject-matter-experts (SME’s), or capturing 
an expert’s performance with a think aloud protocol or 
subsequent recall [32]. Since interpreting a sonification is a 
primarily cognitive task, it would not be possible to visually 
observe an expert’s performance of a sonification 
interpretation task to gain much useful information. To 
compound the problem, doing a think aloud protocol in real 
time for the interpretation of an EMG sonification would be 
difficult considering the interference speaking would have on 
listening to the sonifications. 

To account for the cognitive aspects inherent to 
sonification interpretation, and avoid the ways in which CTA 
methods may not be ideal for decomposing sonification 
interpretation tasks, we are interested in the use of GOMS for 
informing sonification design. GOMS stands for Goals, 
Operators, Methods, and Selection Rules, and it is a 
form of HTA originally developed by Card, Moran, and 
Newell [33].  Its aim is to model and predict user 
behavior, or in the case of sonification, listener 
behavior. The four components of a GOMS model are 
as follows [34]: 

  
• Goals: what the user is trying to accomplish. 

Goals can be, and often are, decomposed into 
Goal/Sub-goal hierarchies.   

• Operators: actions performed in service of a goal. 
Operators can be perceptual, cognitive, or motor 
acts, or some combination of these.  

• Methods: sequences of operators and sub-goal 
invocations that accomplish a goal.  

• Selection Rules: when there is more than one 
method for accomplishing a goal, selection rules 
are the rules that the user employs to determine 
which method to use to accomplish the goal. 

3. APPLICATION OF GOMS TO IDENTIFY 
SONIFICATION DESIGN CRITERIA 

In this study, participants were asked to listen to sonifications 
of two channels of sEMG data, referred to as Muscle A and 
Muscle B, respectively. In the sonifications, both Muscle A 
and Muscle B began at rest, contracted at close to the same 
time, remained contracted for a few seconds, and then 
returned to rest. After listening to each sonification, 
participants were asked to perform the following two sEMG 
data evaluation tasks: 
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Goal: DETERMINE IF A OR B HAS A HIGHER 
EXERTION LEVEL, OR IF THEY ARE THE SAME 

 
 

Method for LEVEL Goal: 
SG 1. Start Task 
SG 2. Identify Muscle A’s Activation 
SG 3. Identify Muscle B’s Activation  
SG 4. Monitor A’s Exertion Relative to B’s 

Exertion during muscle contraction 
SG 5. Identify when A Returns to Rest  
SG 6. Identify when B Returns to Rest 
SG 7. Determine if A or B had Higher Exertion 

Level 
SG 8. Report if A or B had Higher Exertion 

Level 
 

 

Method for Subgoal 1: 
Start Task 

Op 1. Grasp computer mouse 
Op 2. Point with mouse to PLAY button  
Op 3. Left-click PLAY button  
 

 

Method for Subgoal 2: 
Identify Muscle A’s Activation 

Op 1. Perceive sonic event 
Op 2. Perceive unique sonic identifier for 

Muscle A 
Op 3. Place sonic event in auditory store 
Op 4. Shift attention to auditory store 
Op 5. Equate identifier with Muscle A  
 

 

Method for Subgoal 3: 
Identify Muscle B’s Activation 

Same as Method for Subgoal 2, but for Muscle 
B 

 
 

Method for Subgoal 4: 
Monitor A’s Exertion Relative to B’s Exertion 
Op 1. Use echoic memory to continuously 

update A’s max exertion 
Op 2. Use echoic memory to continuously 

update B’s max exertion 
Op 3. Place max exertion in working memory 
 

 

Method for Subgoal 5: 
Identify when A Returns to Rest  

Op 1. Perceive sonic event indicating 
Muscle A returning to rest  

Op 2. Place sonic event in auditory store 
Op 3. Shift attention to auditory store 
Op 4. Stop continuously updating max exertion 

for Muscle A  
 

 

Method for Subgoal 6: 
Identify when B Returns to Rest  

Same as Method for Subgoal 5, but for Muscle 
B 
 

 

Method for Subgoal 7: 
Determine if A or B had a Higher Exertion 

Level  
Op 1. Retrieve max exertion level from 

working memory  
Op 2. Equate max exertion level with Muscle A 

or Muscle B 
 

 

Method for Subgoal 8: 
Report if A or B had a Higher Exertion Level 
Op 1. Grasp computer mouse 
Op 2. Point with mouse to radio button 

indicating correct answer 
Op 3. Left-click radio button 
 

 

Goal: DETERMINE IF A OR B CONTRACTS FIRST, OR 
IF THEY CONTRACT SIMULTANEOUSLY 

 
 

Method for TIME Goal: 
SG 1. Start Task 
SG 2. Identify 1st Muscle Activation  
SG 3. Determine if 1st Activation was Muscle A 

or Muscle B  
SG 4. Determine if other Muscle Activated 

also  
SG 5. If Unsure regarding Subgoal 3, Identify 

2nd Muscle Activation 
SG 6. Determine if 2nd Activation was A or B 
SG 7. Determine if A or B Contracted First 
SG 8. Report if A or B Activated First 
 

 

Method for Subgoal 1: 
Start Task 

Op 1. Grasp computer mouse 
Op 2. Point with mouse to PLAY button  
Op 3. Left-click PLAY button  
 

 

Method for Subgoal 2: 
Identify 1st Muscle Activation 

Op 1. Perceive sonic event indicating muscle 
activation 

Op 2. Place sonic event in auditory store  
Op 3. Shift attention to auditory store  
 

 

Method for Subgoal 3: 
Determine if 1st Activation was A or B 

Op 1. Perceive unique sonic identifier for A 
or B 

Op 2. Equate sonic identifier with A or B  
Op 3. Place identification of A or B into 

working memory  
 

 

Method for Subgoal 4: 
Determine if other Muscle Activated also 

Op 1. Sonic event indicating other muscle 
activating simultaneously perceived?  

Op 2. If yes, store this knowledge in working 
memory 

Op 3. If no, then keep identification of A or 
B (from Subgoal 3) in working memory 

 
 

Method for Subgoal 5: 
If Unsure regarding Subgoal 3, Identify 2nd 

Muscle Activation 
Same as Method for Subgoal 2, but for second 
muscle activation  
 

 

Method for Subgoal 6: 
Determine if 2nd Activation was A or B 

Same as Method for Subgoal 3, but for the 
second muscle activation  
 

 

Method for Subgoal 7: 
Determine if A or B Contracted First 

Op 1. Retrieve identification of first 
contraction as Muscle A or B from 
working memory (Subgoal 3) 

Op 2. If second muscle contraction was 
perceived simultaneously, retrieve this 
knowledge from working memory (Subgoal 
4) 

 
 

Method for Subgoal 8: 
Report if A or B Contracted First 

Op 1. Grasp computer mouse 
Op 2. Point with mouse to radio button 

indicating correct answer 
Op 3. Left-click radio button 
 

Figure 1 – The left column shows the GOMS analysis for the TIME task (determining which of two muscles contracts first), 
and the right column shows the GOMS analysis for the LEVEL task (determining which of two muscles exhibits a higher 
exertion level). In these graphs, “SG” stands for ‘Subgoal’ and “Op” stands for ‘Operator’.  
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1. TIME Task: Identify which muscle (A or B) 
contracted first  

2. LEVEL Task: Identify which muscle (A or B) 
exhibited a higher exertion level   

 
To design sonifications specifically for these two tasks, 

GOMS analyses were performed for both tasks, and the 
results are shown above in Figure 1. These GOMS analyses 
only show Goals, Subgoals, and Operators. The Method is to 
follow the Subgoals in numerical order, and for each Subgoal 
to follow the Operators in numerical order. The assumption is 
that there are not additional Methods that would allow for the 
accomplishment of each Goal, and thus there are no Selection 
Rules shown for selecting between competing Methods. 
Identification of the various Subgoals involved for each task 
served as the primary factor in establishing sonification 
design criteria for each task.  

3.1. Design criteria for the TIME task 

For the task of identifying which muscle contracts first, the 
analysis in the left column of Figure 1 indicates that a listener 
must be able to understand that the task has started (Subgoal 
1), identify when the first muscle changes state from rest to 
contraction (Subgoal 2), then determine if that muscle was 
Muscle A or Muscle B (Subgoal 3).  If the sonification does 
not give the listener the ability to accomplish even one of 
these Subgoals, the listener will not be able to complete the 
task. Thus, the design criteria for the sonifications based on 
the GOMS model for the TIME task are:  
 

1. The start of the listening task must be evident 
2. The sound of the first muscle changing state from 

rest to contraction must be evident 
3. The listener must have a way of distinguishing 

between the sound of Muscle A activating and the 
sound of Muscle B activating  

3.2. Design criteria for the LEVEL task 

For the task of identifying which muscle has a higher 
exertion level, the analysis shown in the right column of 
Figure 1 indicates that the listener must be able to understand 
that the task has started (Subgoal 1), determine when both 
muscles change state from rest to contraction (Subgoals 2 
and 3), monitor the exertion level difference between Muscle 
A and B for the duration of their contractions (Subgoal 4), 
identify when both muscles revert back to rest (Subgoals 5 
and 6), then determine if Muscle A or B had a higher 
exertion level (Subgoal 7). Once again, failure to accomplish 
any of these Subgoals will prevent the listener from 
completing the task.  Thus, the design criteria for the 
sonifications based on the GOMS model for the LEVEL task 
are:   
 

1. The start of the listening task must be evident 
2. The sound of both muscles changing state from 

rest to contraction must be evident 
3. The exertion level difference between the two 

muscles must be evident 
4. The sound of both muscles changing state from 

contraction back to rest must be evident 
 
 
 

4. METHODS 

Each sonification design created for this study was coded in 
the SuperCollider audio synthesis environment. All sEMG 
data processing (rectifying and filtering) was performed 
using MATLAB.  

4.1. Study design 

This study compared the efficacy of two Task-based 
sonification designs to two Data-based sonification designs 
taken from the EMG sonification literature, for two different 
tasks – muscle activation time and muscle exertion level. 
There were thus three main independent variables (IVs: Data-
based design, Task-based design, and Task) with two levels 
of each variable. Further, there were 4 levels of difficulty for 
each task, adding another IV. For the Data-based designs, the 
first level was a pitch mapping and the second level was a 
loudness/timbre mapping, referred to henceforth as a 
loudness mapping. These designs were taken from a 2012 
study investigating sonification of EMG data for use in 
analyzing human movements [35]. The details of these 
designs are explained below in section 4.2. For the Task-
based designs, the first level was the “Task-Panning” design 
which used short beeps to indicate the onset of muscle 
activation and a panning tone to indicate exertion level 
difference. The second level was the “Task-Filter” design 
which also used short beeps to indicate the onset of muscle 
activation, but used a panned filter cutoff mapping to indicate 
muscle exertion difference. There were two dependent 
variables associated with the two levels of the task IV to 
assess performance for each design: judgment of muscle 
activation time (TIME task) and judgment of muscle exertion 
level (LEVEL task). The IV’s and Levels are described in 
Table 1 below. 
 

Table 1: IV and Level for the four sonification designs and 
two tasks. 

IV 1: Data-
based  

IV 2: Task-based IV 3: Task 

Data-Pitch Task-Panning 
Muscle 

activation time 
difference 

Data-Loudness Task-Filter 
Muscle 

exertion level 
difference 

 
This study was a within-subjects factorial design. 

Participants listened to 16 sonifications with each of the four 
designs for a total of 64 sonifications. The presentation order 
of the four sonification designs was counterbalanced to 
account for training effects. 

4.2. Data-based designs 

As previously mentioned, the two Data-based designs used in 
this study were taken from a 2012 paper by Matsubara et al. 
[35]. We chose to use designs from Matsubara’s paper 
because participants in Matsubara’s study were asked to 
perform sEMG data evaluation tasks that were similar to the 
sEMG data evaluation tasks that we asked our participants to 
perform. There were three design methods used in 
Matsubara’s study: Method A: Pitch, Method B: 
Loudness/Polyphonic Timbre, and Method C: Timbre. 
Methods A and B were chosen as the Data-based designs for 
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this study because they resulted in the best listener 
performance during Matsubara’s study.  

The Data-Pitch design was created according to the 
specifications laid out in Matsubara [35] for Method A, with 
the first channel of sEMG data (Muscle A) sonified using a 
sine wave tone over a frequency range of 300-525 Hz, and 
the second channel of sEMG data (Muscle B) sonified using 
a sine wave tone over a lower frequency range of 165-345 
Hz. Additionally, we decided to spatialize this design by 
panning the first channel of sEMG data (A) hard left and 
panning the second channel of sEMG data (B) hard right. We 
made this decision based on our previous findings that 
spatialization helps listeners distinguish between sEMG 
channels [27].  

The Data-Loudness design was also created according to 
the specifications laid out in Matsubara’s paper for Method 
B. Again, we spatialized the design in an attempt to enhance 
listener performance in keeping with our previous findings.    

4.3. Task-based designs 

The Task-Panning design was based on the design criteria for 
the TIME and LEVEL tasks from the task analyses. To 
ensure that the listener would know that the sonification was 
playing, a soft, low-pass-filtered white noise was played 
while the muscles were at rest. The cutoff frequency of the 
LPF was set to 1000 Hz. 

To indicate when each muscle activated, short beep tones 
were played when each muscle began to contract. To indicate 
the contraction of Muscle A, a short beep (0.07 sec duration) 
using a triangle wave at a frequency of 440 Hz was played in 
the left ear. To indicate the contraction of Muscle B, a short 
beep of equal duration using a triangle wave at a frequency 
of 330 Hz was played in the right ear. Once both muscles had 
begun to contract, the LPF white noise was turned off and a 
tone indicating exertion level difference began to play.  

To indicate the exertion level difference between Muscle 
A and B, the sonification code calculated the difference in 
amplitude between A and B (AmpA - AmpB), and then 
mapped this difference to the pan position of a tone that 
played during muscle contraction. If the difference was 
positive, this meant that Muscle A had a higher exertion level 
and the tone panned left, and vice versa. When the difference 
in exertion was small (~0.05 V), the tone panned slightly left 
or right (to a value of +/– 0.7 on SuperCollider’s Pan2 
function). When the difference in exertion was larger (> 0.1 
V), the tone panned hard left or right.  

After muscle contraction, the tone became silent and the 
white noise returned to indicate that the muscles had returned 
to rest. 

The Task-Filter design was also based on the design 
criteria for the TIME and LEVEL tasks from the task 
analyses. For this design, when the muscles were at rest, a 
soft, low-pass-filtered sawtooth wave was played, one in the 
left channel to represent Muscle A and one in the right 
channel to represent Muscle B. The frequency of the waves 
was 100 Hz, and the cutoff frequency of the LPF was 300 
Hz. The two waves were played at equal amplitude so as to 
be perceived in the center of the stereo field. 

To indicate when each muscle activated, short beep tones 
were played right when each muscle began to contract. To 
indicate the contraction of Muscle A, a short beep (0.09 sec 
duration) using an additive synthesis tone with a fundamental 
frequency of 300 Hz was played in the left ear. To indicate 
the contraction of Muscle B, the same short beep was played 
in the right ear. The fundamental frequency of 300 Hz was 

chosen so that these beeps would “sit on top of” the sawtooth 
wave tones (which were LPF’d at 300 Hz) and not interfere 
with them.   

To indicate the exertion level difference between Muscle 
A and B, the sonification code calculated the amplitude 
difference in the same manner as in the Task-Panning design. 
If the difference was positive, this meant that Muscle A (in 
the left channel) had a higher exertion level and the 
difference was mapped to the cutoff frequency of the LPF in 
the left channel, such that the cutoff increased to allow more 
high frequency content to be heard in the left channel during 
muscle contraction. The opposite occurred when the 
amplitude difference was negative, with the cutoff of the 
right channel’s LPF increasing to indicate that Muscle B had 
a higher exertion level. For small exertion differences (0.05 
V), the cutoff would increase from 300 Hz to 1200 Hz, and 
for larger exertion differences (0.15 V), the cutoff increased 
from 300 Hz to 3600 Hz.   

After muscle contraction, the cutoff of both LPF’s was 
set back to 300 Hz to indicate that the muscles had returned 
to rest.  

4.4. Activation time/Exertion level differences 

For each of the four sonification designs, participants listened 
to 16 sonifications. Of these 16, 4 displayed both muscles 
activating at the same time, and 4 each displayed both 
muscles activating 0.13 sec apart, 0.26 sec apart, and 0.39 sec 
apart.  

Additionally, out of the 16, 4 sonifications displayed both 
muscles exhibiting the same exertion level, and 4 each 
displayed both muscles exhibiting a 0.05 V, 0.10 V, and 0.15 
V amplitude difference during muscle contraction. The 16 
sonifications for each design were numbered according to 
Table 2 below.  
 
Table 2. Listing of structure for the 16 sonifications for each 
design.  

 Activation time difference  

0 sec 0.13 
sec 

0.26 
sec 

0.39 
sec 

Exertion 
level 

difference 

0 V 1 2 3 4 

0.05 V 5 6 7 8 

0.10 V 9 10 11 12 

0.15 V 13 14 15 16 

 
As an example, Sonification #1 for any given design 

displayed both muscles contracting at the same time (0 sec 
activation time difference) and exhibiting the same exertion 
level (0 V amplitude difference during contraction). 
Similarly, Sonification #11 in any given design displayed a 
0.26 sec difference between the activation of Muscle A and 
the activation of Muscle B, and a 0.1 V difference in 
amplitude between Muscle A and Muscle B. The order in 
which each sonification within a given design was presented 
was randomized for each counterbalance.  

4.5. Participants 

Forty students and faculty from Texas A&M university 
participated in this study (27 male, 16 female, ages 19-59). 
They all self-reported as not having any hearing impairment 
that would interfere with their ability to participate. At the 
beginning of each session, participants signed a consent 
form, completed a demographic survey, and were asked 

53



The 23rd International Conference on Auditory Display (ICAD 2017)  June 20-23, 2017, Pennsylvania State University 
 

about their knowledge of and experience with EMG data. 
After this, they were briefly trained on what sEMG data is, 
what sonification is, and how sEMG data can be sonified.     

4.6. Computer/Audio setup 

The study was run locally through a browser (Google 
Chrome) using the XAMPP environment in conjunction with 
a MySQL database for recording participant responses. 
Participants listened to the sonifications through a pair of 
Beyerdynamic DT 770 Pro headphones.  

4.7. Measures 

Listener accuracy was measured as a proportion of correct 
responses for both tasks. After listening to each sonification, 
participants were asked two multiple choice questions, one 
each for the TIME and LEVEL tasks. The choices were: 
 

1. Muscle A activated first (or had a higher exertion) 
2. Muscle B activated first (or had a higher exertion) 
3. A and B had the same activation time (or exertion 

level) 
4. Unsure 

 

For example, if a listener correctly identified if Muscle A 
or B contracted first for 8 out of the 16 Data-Pitch 
sonifications, their score was 8/16 = 0.5 for that Design/Task 
pair.  

5. RESULTS 

5.1. Overall performance 

As seen in Figure 2, there was no effect of Task, F(1, 42) = 
1.782, p = 0.189. However, there was a main effect of design, 
F(2.079, 87.29) = 91.23, p < 0.001, eta squared 0.69, and an 
interaction between Task and Design F(2.55, 107.23) = 
32.83, p < 0.001, eta squared = 0.44.    

Bonferroni pairwise comparisons indicated that 
performance was different based on design with the Data-
Pitch design having the worst performance and Task-Filter 
having the best (p < 0.001). Data-Loudness and Task-
Panning had performance levels in between those two and 
Bonferroni pairwise comparisons show that performance on 
all designs were significantly different from each other (all 
p's < 0.001). As shown in Figure 1, there was an interaction 
between Design and Task with the Data-Pitch design having 
better performance for the TIME task (p < 0.034), and the 
Task-Filter design having better performance for the LEVEL 
task (p < 0.028).  

5.2. Performance by difficulty level 

Figure 3 shows the results by difficulty level for the 
activation time task. This figure shows that performance 
differed by Design with the Task-based designs resulting in 
better performance than the Data-based designs (all p's < 
0.01). The Task-based designs and Data-based designs were 
not different from each other (p's > 0.29), F (2.246, 94.318) = 
19.60, p < 0.001, eta squared = 0.318. Figure 2 also shows 
that there were overall differences in performance based on 
the Activation Time Differences (ATD) with better 
performance when the differences  

 
Figure 2 – Overall listener performance for each Design and 
for both Tasks 
 

 
Figure 3 – Listener performance for the TIME Task for each 
Design and Activation Time Difference (ATD). ATD = time 
difference between activation of Muscle A and Muscle B  
 

 
Figure 4 – Listener performance for the LEVEL task for each 
Design and Exertion Level Difference (ELD). ELD = 
amplitude difference during contraction between Muscle A 
and Muscle B 
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were larger (0.26 sec and 0.39 sec) (all p's < 0.001), F(1.539, 
64.65) = 12.27, p < 0.001, eta squared = 0.23. The 
differences by Level differed by Design for the TIME task 
with Bonferroni comparisons indicating that Data-Pitch (0.13 
sec) was different than all others and Data-Pitch (0 sec) was 
different than Data-Pitch (0.39 sec); Data-Loudness (0.13 
sec) was different than all others; Task-Panning showed no 
performance differences by level; and Task-Filter (0.13 sec) 
was different than Task-Filter (0.26 sec), F(5.43, 228.11) = 
7.68, p < 0.001, eta squared = 0.12.   

Figure 4 shows that overall performance for the LEVEL 
task differed by Design with the Task-Filter Design (all p's < 
0.01) resulting in the best performance and Data-Pitch design 
resulting in the worst. Bonferroni comparisons showed that 
all designs were different from each other with performance 
on the Task-Panning being lower than Task-Filter and greater 
than Data-Loudness, F(2.37, 99.55) = 154.54, p < 0.001, eta 
squared = 0.79. Figure 4 also shows that there were 
differences in performance based on the Exertion Level 
Differences with performance generally increasing as 
exertion level differences increased (all p's < 0.038). The 
exception to this was the decrease in performance from 0 V 
difference to 0.05 V difference, F(1.95, 81.91) = 38.12, p < 
0.001, eta squared = 0.476. The differences by Level differed 
by Design with Bonferroni comparisons indicating that Data-
Pitch (0.05 V) was different than Data-Pitch(0.15 V), Data-
Loudness (0.15 V) was different than Data-Loudness (0, 
0.05, 0.1 V), Data-Loudness (0, 0.05 V) was different than 
Data-Loudness (0.1, 0.15 V), Task-Panning (0.05 V) was 
different than Task-Panning (0, 0.1, 0.15 V), and Task-Filter 
showed no differences between levels, F(5.563, 233.648) = 
15.534, p < 0.001, eta squared = 0.27.  

6. DISCUSSION 

The results of this study clearly indicate that for interpreting 
sEMG sonifications for these tasks, using sonification 
designs based on the task results in superior performance, 
particularly for the TIME task.  

For the TIME task, The Data-Pitch and Data-Loudness 
designs showed poor performance when the activation time 
difference was 0.13 sec. By contrast, the Task-Panning and 
Task-Filter designs showed performance that essentially 
increased as the TIME difference increased (Figure 3). This 
was likely due to the fact that the Task-based designs were 
designed specifically to create a large, temporally precise 
contrast between the sound of a muscle at rest and the sound 
of a muscle beginning to contract. The Data-based designs 
did not provide the same level of perceivable contrast 
between the sound of a muscle changing state from rest to 
activation.  

For the LEVEL task, there were interesting interactions 
based on the difficulty level of task with the more difficult 
stimuli (.05 V) reducing performance remarkably more with 
the Task-Panning design than any of other of the designs. 
Further, there were differences in performance between the 
Data-Pitch and Data-Loudness designs for the LEVEL task. 
This is likely due to two things: the Data-Pitch design used 
different pitch ranges for Muscles A and B which made a 
direct comparison between the two difficult, and the Data-
Loudness design essentially made use of a panning effect by 
mapping muscle exertion level to loudness. Since the designs 
were spatialized into left and right audio channels, at larger 
exertion level differences (0.1 and 0.15 V), the Data-
Loudness design acted like a panning mapping, and indeed, 
the Data-Loudness design showed similar performance for 

the LEVEL task as both of the Task-based designs, which 
both made explicit use of panning (see Figure 4).  

These findings that Task-based designs can result in 
better listener performance than Data-based designs strongly 
suggest the broader integration of task-based approaches into 
the sonification design problem space. Additionally, they 
indicate that the inclusion of task analyses within a 
theoretical framework for sonification design may facilitate 
the development of this illusive framework.  

Task-based approaches to sonification design do not 
seem to be well represented in the auditory display literature. 
It is not uncommon in the EMG sonification literature, for 
example, to see an explanation for how a sonification was 
designed but to not see an explanation for why it was 
designed that way. Justifications for design decisions are 
sometimes given, but they rarely seem to go beyond appeals 
to sonic cosmetics or “traditional” mappings like pitch and 
loudness.  

A task-based approach to sonification design could allow 
sonification designers to use Human Factors and HCI design 
methodology to identify sonification design criteria. In so 
doing, this approach could afford sonification designers 
stronger justification for design decisions, as well as facilitate 
easier communication between sonification designers and 
HF/HCI researchers – which could broaden the ICAD 
community’s impact and stimulate wider interest in the field.  
As mentioned in the introduction to this paper, Roddy and 
Furlong have discussed sonification aesthetics and the 
problem of a disembodied approach to sonification design. 
They have argued that leveraging knowledge of embodied 
cognition and embodied schemata may help sonification 
designers to circumvent the Mapping Problem by mapping 
sonifications along embodied dimensions. Task-based 
approaches to sonification design may not be embodied in 
and of themselves, but since task analyses can provide in-
depth knowledge of a user’s task, and since mapping 
sonifications along embodied dimensions requires a deep 
understanding of the user’s task, it seems that task-based 
approaches to sonification design may aid in identifying 
useful embodied schemata along which to map sonifications 
for specific tasks.  

In conclusion, task analysis techniques are well 
established in fields such as Human Factors and HCI, where 
design decisions are critical. In this study, implementing task 
analysis techniques into the design of auditory displays was 
shown to be an effective approach for creating interpretable  
sonifications. Further use of task analysis techniques in 
auditory display is thus recommended. This study has served 
as a “proof-of-concept,” and we believe that further use of 
task-based approaches in sonification research may help to 
ultimately ground sonifications in a more accessible – and 
perhaps embodied – aesthetic framework, thus leading to the 
development of more easily interpretable sonifications. If this 
is done, it could broaden the ICAD community’s impact and 
generate wider awareness of, and interest in, the field.  
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