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by changes in volume of the rock and fluid as their temperatures
change). One current challenge in the field of seismology is to be
able to identify these fracture mechanisms from the seismic sig-
nals, possibly in real time, so we can have control on them in order
to maximize the heat extraction while minimizing the fluid pump-
ing and induced seismicity.

In this project we focus on the earthquakes occurring at an
active geothermal reservoir at “The Geysers” in Sonoma County,
CA, USA1.

2. METHOD

The main question is the identification of fracture processes from
the physical measurement (i.e. seismic recordings). Our as-
sumption is that each fracture process is characterized by spectro-
temporal features and patterns that are not picked up by current
signal processing methods used in seismology, but can be identi-
fied by the human auditory system and/or by machine learning. We
are designing an experimental method for addressing this question,
bringing together psychoacoustics and machine learning. To what
extent can the human auditory system identify fracture processes?
Can we teach computers to identify fracture processes?

2.1. Unsupervised machine learning

The first step of the method aims to reduce the large dataset to a
smaller set of signals which are typical of this dataset (i.e. which
sample effectively the dataset), so that they can be processed by
human listeners in a reasonable amount of time. Indeed, earth-
quakes happen constantly at the Geysers, making the 3 year-long
catalog of seismic data we focus on encompass more than 46,000
events. Machine learning techniques must be used in order to re-
duce the dataset to its most typical elements, in reasonable number,
so that they can be given to listeners.

Because nothing is assumed about the patterns that are to be
found in the signals, an unsupervised approach to machine learn-
ing is used. In particular the machine is not asked to extract partic-
ular features on which the clustering would be based (in the con-
trary to previous studies using machine learning technique in the
field of seismology, e.g. [14]). Because the subset extracted via
the machine learning is aimed at being transformed into sounds,
the spectrogram representation of the signals is preferred to time
series, assuming this representation of the data can be linked more
easily to how humans perceive sound than raw waveforms. The
unsupervised machine learning is implemented as follows:

1http://esd1.lbl.gov/research/projects/-
induced seismicity/egs/geysers.html

ABSTRACT

Geothermal energy mining consists of injecting cold water into 
hot rocks in order to create micro-fractures allowing heat to be 
extracted and converted into electrical energy. This water injec-
tion can trigger several rock fracture processes. Seismologists are 
facing the challenge of identifying and understanding these frac-
ture processes in order to maximize heat extraction and minimize 
induced seismicity. Our assumption is that each fracture process 
is characterized by spectro-temporal features and patterns that are 
not picked up by current signal processing methods used in seis-
mology, but can be identified by the human auditory system and/or 
by machine learning. We present here a pluridisciplinary method-
ology aimed at addressing this problem, combining machine learn-
ing, auditory display and sound perception.

1. INTRODUCTION

Introduced in the 1960s for research purposes [1, 2], the transfor-
mation of seismic data into sounds has remained in use until the 
present day, though often for education or artistic use [3, 4, 5, 6]. 
However recent studies [7, 8, 9, 10, 11, 12, 13] have demon-
strated the potential of auditory display in seismic research, using 
the power of the human auditory system to recognize patterns in 
signals, and to produce alternative signal descriptions that might 
provide seismologists with new insights and hypotheses. Concur-
rently, there is a recent trend in seismic research to use machine 
learning techniques [14, 15, 16, 17] for automatic classification 
purposes, bringing interesting results to the field of seismology.

Earthquakes are mainly caused by tectonic stress occurring 
in the Earth’s crust and upper mantle. However, they can also 
be triggered by anthropogenic activity (“human-induced seismic-
ity”). Human-induced earthquake may be the result of high pres-
sure water injection into the ground, as it is found in Oklahoma 
during waste water disposal activity. Earthquakes can also by a 
by-product of human activities in geothermal fields, where water 
is allowed to percolate through the rock and pick up its heat, which 
is then used to generate electricity. Injecting under hydrostatic 
pressure cold water into a hot reservoir can drive different frac-
ture mechanisms: hydraulic fracturing (microcracking driven by 
elevated fluid pressure), frictional sliding on existing faults (trig-
gered by fluid pressure changes), and thermal cracking (driven
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1. Learn patterns on the dataset through Non-Negative Matrix
Factorization (NMF) [18, 19] on spectrograms. Each spec-
trogram can be reconstructed via the product of a matrix of
activation coefficients (one for each spectrogram, smaller
dimension than the spectrogram) and of a dictionary of pat-
terns (a matrix common to all spectrograms);

2. Reduce the dimension of the activation matrices through
Hidden Markov Models (HMM) [20];

3. Cluster the HMM-modeled activation matrices with the K-
means method [20]. The machine is asked to define clusters
of similar events (i.e. “close” vectors, according to a certain
distance). Again, no hint is given to the machine on how to
define these clusters. The number of clusters asked to the
algorithm is defined by the user (see Sec. 3).

The only tuning that was done during the machine learning phase
was the adjustment of the number of clusters. Having started arbi-
trarily with 10 clusters, we are investigating the effect of changing
the number of clusters from 2 to 20.

The K-means algorithm assigns to each cluster a centroid.
Spectrograms are then put in the cluster minimizing a distance to
the centroid. This spectrogram/centroid distance can be used in
order to assess the “typicality” of each spectrogram in a cluster:
Spectrograms closer to the centroid are thought to be more typical
of the cluster than further spectrograms. These prototypes will be
selected for the listening tests, assuming that they are sufficient to
provide a good and comprehensive overview of the clusters.

2.2. Audification of selected data

Seismic and sonic waves being very similar, the easiest and most
conservative sonification technique is “audification” [21, 10, 11].
This technique consists in just changing the time-scale of the time
series data (in our case doing a time-compression, equivalent to
moving the infra-sonic frequency content of the seismic signal
back up to the audible range, or to increasing the sampling fre-
quency). Selected signals will be audified for the listening tests.

2.3. Listening tests

The interpretation of the clustering and of the criteria of “blind”
machine categorization will be made through listening tests con-
ducted with the audified data. Building on previous results that
showed the potential of humans to assess audified seismic data
[11, 13], the audified sounds will be the stimuli of a free sort-
ing task. In such a task, the participants are asked to categorize
sounds according to the perceived similarity. Each category then
has to be verbally described, as in [13, 22, 23]. Such a catego-
rization and verbalization task has a double purpose. First, we will
check if machine and human categories agree, i.e. if items from the
same machine-produced cluster are perceived as similar (grouped
into the same category), and if items from different clusters are
grouped into distinct categories. Second, the verbal description of
each category gives us access to the criteria chosen by the listeners
to proceed to the grouping of sounds. We will seek to interpret
and link these criteria with audio descriptors (e.g. those defined in
[24]) that can be computed on the spectrograms, but also on the
spectra and waveforms, if applicable.

The abovementioned listening tests will be conducted both in
a laboratory setting, and on a crowd-sourcing internet platform.
Initial results from informal listenings demonstrate clear sonic dif-
ferences among clusters.

2.4. Supervised machine learning

Once the signal features that are relevant to the listeners will be
identified (and we assume that some of them will presumably cor-
respond to features described in [13]), they will be computed for
every signal in the dataset to check if categories produced by lis-
teners can be retrieved by the machine. Eventually, these features
— that are expected to be related to fracture processes or path
effects — will feed a supervised machine learning onto another
dataset: the algorithms will be fed with labelled data and will be
trained to identify and categorize new data, based on criteria that
are relevant from the rock mechanics point of view.

3. FIRST RESULTS

Our results from unsupervised learning show that if the number of
clusters is higher than 4, the clustering comes up with one cluster
gathering all events of higher magnitude. Such a high-magnitude
cluster is not very informative, since the estimation of the magni-
tude of an event is a relatively easy task that does not need machine
learning or auditory techniques. Therefore results are presented
here with 2 clusters asked to the machine. These two clusters are
referred to as C1 and C2 in the following.

The clusters are not characterized by any spatial criteria (they
are not different faults), as Fig. 1 shows. In other words, seismic
events are not clustered according to their location with respect
to the source location (this would have been the case if e.g. one
cluster had clustered all events north of the station). In a simi-
lar way, the clustering is not done according to the depth of the
events (i.e. deep and shallow events are not separated out). How-
ever, the clustering turns out to be based on the occurrence time
of the seismic events. Fig. 2 shows histograms of the occurrence
times of events in each of the two clusters. This graphical repre-
sentation shows distributions of dates that seem to slot very well
together. This may suggest that similar physical phenomena are
taking place during different periods of time. This may also be
related to the history of water injection, potentially changing the
fracture processes that are triggered, or the steam/liquid water bal-
ance in the rocks. We expect listening experiments to provide hints
to help better understand the processes at work.
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