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ABSTRACT

Sonic representations of spaces have emerged as a means to cap-
ture and present the activity that conventional representations, such
as maps, do not encapsulate. Therefore, to convey the activity
information of regions, both large and small, we use sounds and
information provided by regional communities in the automated
design of soundscapes to re-sonify geographic sound activity. To
quantify this community knowledge, we have developed an onto-
logical framework to determine the importance of sound and con-
cepts to one another using acoustic, semantic, and social infor-
mation. This framework is then used in the automated design of
a generative soundscape model purposed to identify and re-sonify
sounds that impart relevant information about a geographic region.
Furthermore, we are developing a social networking website to fa-
cilitate the collection and re-sonification of sounds and data.

1. INTRODUCTION

The ability to understand the activity local to specific geographic
regions is limited when presented through maps, directories, and
other conventional representations. Even novel interactive repre-
sentations, such as Photosynth [1] and Google Street View [2],
present community information in the form of artifacts (in this in-
stance, images). Exploring geography through sonification, how-
ever, presents a method of experiencing a location through sonic
events. This concept has been explored in a number of systems
that primarily focus on displaying where sounds are recorded and
allowing them to be played as recorded [3, 4, 5]. As a primary
carrier of information about activity, sound can project informa-
tion about how people relate to their surrounding environments
and what these environments mean in terms of their daily lives.
This link between geography and activity is often explored in the
context of soundscapes. As acoustic experiences are considered
to play a significant role in human ecology, soundscapes may sup-
plement our comprehension of activity in physical environments
and geographic spaces as well as our understanding of cultural
and anthropological issues [6, 7, 8]. Whether real or imagined,
soundscapes have been used to enhance immersive experiences in
real and virtual worlds for purposes including music [9], audio-
visual production [10], geographic exploration [11, 12, 13], and
community understanding [14]. Many previous innovative works
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in soundscape synthesis address community meaning and aesthet-
ics in interactive systems through the knowledge of a composer,
often gained through community presence, interaction, and/or in-
terviews [11, 12, 13, 15]. We seek, however, to create scalable,
automated methods of soundscape design, where meaning is de-
fined by communities themselves, drawing on their provision of
both sound recordings and community knowledge.

Meaningful re-sonification of activity in a geographic region
can be difficult when recorded sounds from that region are either
1) abundant or 2) scarce. Where recordings in a region are few
in number, re-sonification itself may be sparse or highly repeti-
tive without the inclusion of relevant sounds from other locations.
Conversely, if recordings from a region are plentiful, many sounds
may be redundant or uninformative about the area’s activity. Both
situations may be addressed by classifying and using those sounds
that are relevant and important to an area. Traditional classification
of sounds within a soundscape (keynote, signal, and soundmark)
is primarily focused on their perceptual role to listeners [6, 7].
This classification is area-specific, depending on the perception
of sounds as dictated by the meaning and prevalence of sounds in
a community. While the identification of important sounds to an
area does not provide this classification, it is able to distinguish
which sounds convey the relevant activity of a region, a relevance
perhaps best determined by that region’s own community.

The concept of community-defined importance of sounds has
long been held in the auditory field; in [6], Schafer states,

Acoustic design should never become design control
from above. It is rather a matter of the retrieval of a
significant aural culture, and that is a task for every-
one.

This idea also extends beyond the auditory domain; Google’s
PageRank technology, for example, determines the importance of
web pages by considering the number and relative importance of
other pages that link to them [16]. The relevance of such pages is
then defined by the internet community’s own activity. Similarly,
the acoustic knowledge and the actions of a community can help
to reveal important sounds for the re-sonification of geographic
activity.

To work towards revealing this importance, we have devel-
oped an ontological framework to link sounds together through
acoustic, semantic, and social information. Using acoustic con-
tent in conjunction with user-provided tags, our framework re-
lies on the prior knowledge of acoustic and semantic ontologies
combined with community-defined social links between sounds
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and concepts. By linking concepts and sounds together with the
community-provided information, the ontological framework pro-
vides a measure of the relevance of sounds (and concepts) to one
another. To re-sonify specified locations through the playback of
sounds in a database, the ontological framework is used to create
a graph-based generative soundscape model. Similar to the use
of textual queries to filter a ranked list of important websites, we
use location to determine the soundscape model parameters such
that geographically relevant sounds play frequently. Consideration
of the size (surface area) of locations allows our re-sonification to
scale to communities or regions of varying size. Using sounds
recorded from these locations and other locations that are deemed
important by an area’s community, our methodology aims to create
meaningful soundscapes reflective of the geographic sound activ-
ity in those areas. User-tests to assess our methodology are needed,
though informal reviews by users have thus far been generally fa-
vorable.

The remainder of the paper is organized as follows. Section 2
describes our ontological framework to link sounds and concepts
together, using acoustic, semantic, and social information. The
application of this framework to the automated design of a sound-
scape model for re-sonifying geographic activity is discussed in
Section 3. Section 4 then presents a social networking website
currently under development that provides for the collection of and
classification of sounds; the site features an interactive map using
our re-sonification scheme to allow virtual “soundwalks.” Finally,
preliminary results are given in Section 5, followed by conclusions
and discussion of future work in Section 6.

2. ONTOLOGICAL FRAMEWORK

To automatically compose soundscapes from collections of sounds
with user-provided descriptions, some notion of similarity between
sounds is necessary to determine what sounds may be relevant to
a space. For example, if few sounds are recorded in a location,
retrieving perceptually similar sounds provides greater diversity in
the synthesis process. We calculate such similarity with an onto-
logical framework that links together sounds and concepts, using
acoustic similarity between sounds, social information in the form
of links between sounds and concepts, and semantic information
in the form of conceptual similarity [17]. Using these separate
modalities, the ontological framework determines the relevancy of
objects (sounds and concepts) to one another, using available links
(acoustic, social, or semantic).

The ontological framework consists of an undirected graph
(Figure 1), where nodes in the graph represent sounds (S =
{s1,...sn}) or concepts (C = {ci,...car }). Nodes are connected
by weighted links, and a nonnegative link weight connecting nodes
i and j is signified by W (i, 7). Links of weight zero represent
equivalence between the nodes connected by that link, while a link
of infinite weight between two nodes is equivalent to no link being
present. Given a subset of nodes, .4, and query node, g, a posterior
distribution from the network can be calculated as follows:

e~ 4" (a,a)
7d* 7b 7
ZbEAe (a;b)

where d* (g, a) is the shortest-path distance in the network between
nodes g and a, which can be efficiently computed using Dijkstra’s
algorithm [18]. Note that, in the case of a query node that does
not yet exist in the database, such as a new sound or concept, the
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distances between the query node and all other nodes of its type
can be computed on demand. For example, when a new sound is
uploaded to the database (¢ € S) and the ontological framework
returns a distribution over concepts (A C C) as in Figure 1 (a), we
can automatically annotate a new sound file with tags suggested
by the community based on the audio content. In a similar fash-
ion, a concept query (¢ € C) can return a distribution over sounds
(A C 8) as in Figure 1 (b). In order to use the ontological frame-
work in this fashion, we must set the values for all link weights.
A description of the three types of links we use, sound-to-sound,
concept-to-concept, and sound-to-concept, follows below.

2.1. Acoustic information: sound-to-sound links

Sound-to-sound weights can be computed by comparing the
acoustic content of each sound. This process begins with acoustic
feature extraction, where six low-level features are calculated us-
ing a frame-based analysis, where we use 40 ms frames with 50%
overlap and a Hamming window. Features are calculated either
from the time-domain data or the short-time Fourier Transform
(STFT) spectrum. The feature trajectory for a sound file is given
by Yl(:lqip) where th is the 7th feature value at frame ¢.

The six features we use include loudness, the dB-scaled RMS
level over time; temporal sparsity, the ratio of £>° and £' norms cal-
culated over all short-term RMS levels computed in a one-second
interval; spectral sparsity, the ratio of £>° and ¢' norms calcu-
lated over the STFT magnitude spectrum; bark-weighted spec-
tral centroid, a measure of the mean frequency content for a
sound frame; transient index, the ¢ norm of the difference of
Mel frequency cepstral coefficients (MFCCs) between consecu-
tive frames; and harmonicity, a probabilistic measure of whether
or not the STFT spectrum for a given frame exhibits a harmonic
frequency structure. For more details on how these features are
calculated, see [19]. This feature set was developed to accurately
represent a broad range of environmental sounds rather than any
specific class of sounds (e.g. speech or music) while also provid-
ing an intuitive and minimal set for efficient retrieval of sounds
stored in a database. To compare sounds, [20] describes a method
of estimating L(s;, s;) = log P[Yl(:;P)(s,-)|>\<1:P)(sj)], the log-
likelihood that the feature trajectory of sound s; was generated by
the hidden Markov Model (HMM) A7) (s;) built to approximate
the simple feature trends of sound s;.

The ontological framework we have defined is an undirected,
acyclic graph, which requires weights be symmetric (W (s;, s;) =
W (s, si)) and nonnegative (W (s;, sj) > 0). Therefore, we can-
not use the log-likelihood L(s;, s;) as the link weight between
nodes s; and s;, because it is not guaranteed to be symmetric and
nonnegative. Fortunately, a well known semi-metric that satisfies
these properties and approximates the distance between HMMs
exists [17, 21]. Using this semi-metric we define the link weight
between nodes s; and s; as

W(si,s5) = T%[L(Si, si) — L(s4, 55)] )
1
+ ?j[L(sj’sj) - L(sj»si)}v

where T; and T represent the length of the feature trajectories for
sounds s; and s;, respectively.

2.2. Semantic information: concept-to-concept links

To calculate concept-to-concept link weights, we use a similar-
ity metric from the WordNet::Similarity library [22]. Specifically,
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Figure 1: Organization of ontological framework for two common indexing and retrieval tasks. Dashed lines indicate links added at query
time. Text-based retrieval use words to search for (unlabeled) sounds. Annotation automatically describes a sound file based on its audio

content and provides suggested tags to contributors.

we use the vector metric, because it supports the comparison
of adjectives and adverbs, which are commonly used to describe
sounds. The vector metric computes the co-occurrence of two
concepts within the collections of words used to describe other
concepts (their glosses) [22]. For a full review of WordNet simi-
larity, see [23, 22].

By defining Sim(c;, ¢;) as the WordNet similarity between
the concepts represented by nodes c; and c;j, an appropriately
scaled link weight between these nodes is

Sim(ci, cj)

W(ci, ¢j) = —log Q)

maxy,; Sim(ck,cr) |

2.3. Social information: sound-to-concept links

We quantify the social information connecting sounds and con-
cepts using a M x N dimensional votes matrix V', with elements
Vi equal to the number of users who have tagged sound s; with
concept ¢; divided by the total number of users who have tagged
sound s;. By appropriately normalizing the votes matrix, it can be
interpreted probabilistically as

P(Si7Cj):ij'/ZZVkl 4)
k l

P(sile;) = Vii/ ) Vi ®)
k

P(cjlsi) = Vii/ > Vii, (6)
k

where P(s;,c;) is the joint probability between s; and cj,
P(si|c;) is the conditional probability of sound s; given concept
¢j, and P(cj|s;) is defined similarly. Our goal in determining
the social link weights connecting sounds and concepts is that the
probability distributions output by the ontological framework us-
ing (1) are as close as possible to the conditional distributions
from the votes matrix in (5) and (6). One way of measuring the
distance between probability distributions is the Kullback-Leibler
divergence [24]. The link weights between sounds and concepts
are then optimized to jointly minimize the Kullback-Leibler di-
vergence between the distributions obtained from the ontological
framework and those from the votes matrix, using each sound in
the database to obtain a distribution over concepts and each con-
cept in the database to obtain a distribution over sounds. Complete

details on this weight optimization process are provided in [17].
Empirically, we have found that a simple approximation of the op-
timized weight values is to set them to a value inversely related to
the joint distribution (4), i.e., W(si, ¢;) = —log P(s;, ¢;).

Presently, the votes matrix is obtained using only a simple tag-
ging process. In the future we hope to augment the votes matrix
with other types of community activity, such as discussions, rank-
ings, or page navigation paths on a website. Furthermore, sound-
to-concept link weights can be set as compositional parameters
rather than learned from a “training set” of tags provided by users.
For example, sounds can be made equivalent to certain emotional
concepts (happy, angry, etc.) through the addition of zero-weight
connections between specified sounds and concepts. These emo-
tional connections will then affect the display and soundscape re-
synthesis processes discussed in subsequent sections. Similarly,
relative scalings of weights between different types of information
(e.g., semantic versus acoustic) can be used to explore different
relationships amongst the collected sounds.

2.4. Multidimensional scaling

In order to conveniently summarize the social, semantic, and
acoustic information contained in the ontological framework for
soundscape re-synthesis and visual representation of sound ac-
tivity on a map, we use multidimensional scaling (MDS) [25];
this embed each sound or concept node in the graph into a low-
dimensional space in such a way that retains the distance relation-
ships between nodes. MDS operates on a distance matrix, which
is obtained by finding the shortest-path distance between all node
pairs using Dijkstra’s algorithm.

To provide an example of how the MDS embeddings of our on-
tological framework represent social, semantic, and acoustic infor-
mation, Figures 2(a), 2(b), and 2(c) display the two-dimensional
MBDS for a subset of selected tags. In Figure 2(a) the distance ma-
trix is calculated from an ontological framework containing only
tag nodes, i.e., only semantic information, while Figure 2(b) con-
tains both sound and tag nodes but only uses acoustic and social
links, excluding concept-to-concept semantic connections. Fig-
ure 2(c) shows the MDS that uses all available nodes and links,
i.e., acoustic, social, and semantic information. The differences
between the absolute scales of the axes in the figures result from
the different distance matrices, but by comparing relative tag po-
sitions we can see how information is organized in the different
frameworks. From Figure 2(a), we can see that natural clusters
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form from the semantic information, such as {vehicle, bicycle,
motorcycle, bus}. Similarly, synonyms such as outside/outdoor
are near each other. However, some concepts we might expect to
group together do not, e.g., chat/speech. Similarly, in Figure 2(b),
concepts such as car and motor are close, but bird and chirp are
not.

By including social and acoustic information in the frame-
work, as in Figure 2(c), the concepts organize into clusters that
are informed by which concepts sound alike. For example,
chat/speech are now quite near each other. Similar new cluster-
ings can be seen between word pairs such as gravel/crunch and
bird/chirp. Some clusterings are more vague in the reorganization,
such as that which formerly grouped all vehicles, as we are now
also capturing information of what concepts typically are heard
together or in similar circumstances. This clustering behavior is
then considered in our method of soundscape synthesis, described
in the following section.

3. SOUNDSCAPE DESIGN

In the ontological framework, the relevance and importance of dif-
ferent sounds to one another is quantified. Using this information,
we have developed a method to automatically design graph-based
generative soundscape models to re-sonify geographic sound ac-
tivity. This methodology aims to provide automated soundscape
design that 1) is scalable to geographic regions of any size, and
2) meaningfully incorporates community knowledge to address
re-sonification when locally obtained sounds are scarce or overly
plentiful. Our design and synthesis of soundscapes assumes
the availability of a database of sounds with GPS locations and
community-provided tags; our process of collecting this data is
presented in Section 4.1. Figure 3 displays how the components of
our soundscape synthesis system interact, described as follows in
detail.

3.1. Markov Transition Networks

Many of the recent approaches to soundscape generation use prob-
abilistic generative models to sonify activity, focusing generally
on designing the overall distribution of sounds in the soundscape.
By using a stochastic generative model, all generated soundscapes
provide different experiences that are consistent in their meaning,
yet unique in each instance. In [10], for example, a method of
ambiance generation is developed, where short isolated sounds are
mixed with longer atmospheric recordings to generate a sound-
scape described by user-provided textual queries. The addition of
the short, isolated sounds to the mix is determined probabilisti-
cally such that they most often appear in periods of relative silence
in the overall mix. Other methods, such as that of [15], gener-
ate a soundscape from the randomized playback of pre-classified
sounds where the expected temporal density of different types of
sounds is determined through user interaction and design. Recent
work [12, 13] uses a manually designed graph-based model where
sound sequences are determined stochastically but subject to the
set of sequences allowed by the graph’s design. This model is par-
ticularly useful in modeling representations of complex sources of
sound events. Drawing upon this and other work, we use graph-
based modeling for soundscape synthesis, but with additional fo-
cus on the overall expected temporal density of sounds.

To generate soundscapes for our application, we have chosen
to use an emerging compositional structure that we call a Markov
Transition Network (MTN), a variation of the models introduced

ICAD-308



The 16th International Conference on Auditory Display (ICAD-2010)

June 9-15, 2010, Washington, D.C, USA

Ontological
Framework

Acoustic Data |

I
I
| Tags
I
I

I i MDS

i—L\ . . Markov
User(s) Virtual Location » Transition GPS Data Database
g Network
7'y
i Sequencing
Synthesized Soundscape Synthesis |4 Sound Files

—» Interaction

— — » Data Provision

Figure 3: Diagram of the soundscape synthesis system.

in [12, 13, 26]. An MTN is a directed graph with N nodes, with
possible directed edges from each node, 7, to another node, j, in-
cluding 5 = <. Figure 4 displays and example MTN. The MTN is
used by an actant process, A(t), that “travels” to the various nodes
of the network, with its behavior dictated by the edges present in
the graph. The actant process takes on values from 1 to N, repre-
senting the node at which the process is located at a given point in
time. Each edge has an associated transition time, A(%, 7). When
A(t) “enters” node 14, the choice of the “next node,” j, is deter-
mined by an associated probability, P(i, j), and the actant process
waits a time of A(z, 7) before making the transition. If no edge
exists between any two nodes, the associated probability is zero.
Given these properties, we note that A(¢) is not a Markov process,
as transition times depend on the origin and destination nodes,
though it is a Semi-Markov process with deterministic transition
times. Figure 4 displays an example MTN, with nodes and tran-
sition times of edges labeled. (Edge probabilities are omitted for
clarity.)

Sound synthesis is performed by the sequenced playback of
sounds as determined by the actant process. Sounds in the database
are uniquely associated with a node, 7, and a duration, D (7). Upon
A(t) reaching a new node, the associated sound is played back
in full, regardless of the chosen transition time to the next node
or length of the following sounds. We presently mix together all
sounds being played back into a single soundscape, though we note
that a more complex multi-channel scheme could be adopted, and
various effects (e.g., reverb) may be applied to individual sounds
or the entire mix. Note that multiple actant processes may be active
at any time, independently triggering sounds.

Using an MTN, the sequencing of sounds is made random, but
it may be limited by the connections made between nodes. If only
a single edge is directed from a node, then the sequencing upon
the actant process’s selection of that node will be temporarily de-
terministic. However, if all nodes in an MTN are fully connected,
the behavior of the actant process becomes less predictable (de-
pendent on the transition probability distributions). By limiting
the number of edges connecting nodes, the sequencing determined
by actant processes may be made variable, yet confined by the pa-
rameters of the network. This is considered in [12, 13], where lim-
ited connections are made between clusters of nodes to specify the
behavior of complex sources of sound as predictable sequences.
We recognize this effect of limiting connections, but we also wish

Figure 4: Example MTN for soundscape synthesis. Edges are la-
beled with transition times. Transition probabilities are not shown.

to examine the overall expected properties of the synthesized out-
put. Therefore, we consider the expected temporal density of all
available sounds.

For a sound ¢, with an intensity value (this may be any mean-
ingful chosen measure, such as loudness), V (z), we define the ex-
pected sum of intensities of any instances of sound ¢ at a given
time to be the density, Density(7), given by

L D)V (i)

Density(i) = TG0 @)
where T'(i, 7) is the expected time for the actant process to travel
from node ¢ to node j, including indirect paths. (7°(%,j) is then
the expected time for the actant process to leave and return to node
). If the actant process travels directly to j, the transition time
will simply be the delay, A(4, j), else it will be the delay, A(z, k),
to an intermediary node, k, and the time taken to then reach j.
Therefore,

T(i,j) = Y. PGkAGK)+ Y. P6k)T(k ). 8)
k=1 k=1,k#j

Letting A, P, and T be N x N matrices with with elements
A(i, ), P(i,7), and T'(4, j), respectively, we may express (8) in
matrix-vector form as

T(v.]) = C'I_QJ'T(:vj)a ©
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where T'(:, §) is the 5** column of T, the i*" element of the N x 1
vector, C, is

C(i) = > P(i,k)AG, k), 10)

and Q; is P with the 4t column zeroed out. This gives
T(,j) = (I-Q)7'C (1n

which may be iterated over j.

While this allows us to analyze the density of sounds in a
soundscape, for the purpose of design, we seek the ability to spec-
ify network parameters to create a desired density of sounds (this
density may be determined by the interaction to which the resulting
soundscape is applied). As the available sounds and their prop-
erties are fixed, specifying the density value of sounds fixes the
desired diagonal elements of 7. This leaves flexibility in deter-
mining the MTN parameters, A and P, as there are N equations
(one for each of the diagonal elements of 7") and up to 2N? un-
knowns. Therefore, we allow P to be chosen by the designer (hu-
man or computer). By choosing P, the connecting edges of the
network may be defined, and connections between relevant or log-
ically successive sounds may be reinforced with high probability.
The desired densities may then be achieved through the necessary
values of A.

To determine A, we first define F' = E®, where F € RV*V |

@ € RY*N? and the i*" row of E is given by
EG,:) = e+a(l—Q)'E, 12

where Q; is P with the it" column and row removed, g; is the
i'" row of P with P(i,4) removed, ¢’ is the i‘" row of the size-N
identity matrix, F; is the identity matrix with the it row removed,
and ® consists of all zeros except for

where 4 and j are iterated from 1 to N. Finding A may then be
achieved by solving the quadratic program:

Minimize ||F - vec(A) — 7|3

subjectto  vec(A) = b

where b is a vector of elements greater than or equal to zero, and
7 € R¥ is the column vector where the 5*" element is the value of
T'(%,%) necessary to achieve the desired density of sound . The in-
equality constraint is introduced to allow future extensions where
a minimum delay time between certain sounds may be desired.
We note that the amount of nontrivial elements of A is limited by
the edges of the network, and that in some cases the actual set of
achieved densities may be the best approximation of densities in a
squared error sense.

3.2. Automated Model Design

Using information from the ontological framework and the sounds
themselves, we have developed a method of automatically design-
ing an MTN to re-sonify the sound activity of a specified “virtual
location” that corresponds to a physical location. Seeking to play
the sounds from and relevant to the location, we use our ontologi-
cal framework to make connections between relevant sounds in the
MTN and specify the other parameters such that the expected den-
sities of local sounds are relatively high. By making local sounds
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dense in the soundscape, they will clearly be heard often, making
the available local sounds a key component of the soundscape. As
this also implies that the actant process will often travel to local
sounds, the creation of edges based on relevancy and importance
may aid the actant process in traversing nodes corresponding to
sounds relevant to the recorded local sounds. This method is exe-
cuted as follows.

The edges between vertices are determined by performing
a Delaunay triangulation (the dual graph of a Voronoi tessel-
lation) on the sound locations in the previously described two-
dimensional MDS. Where a line is drawn between two vertices
in the triangulation, edges will be created in both directions; self-
connections are not made. The results of Delaunay triangulation
on the MDS vary with the placement and clustering of sounds, but
it generally connects sounds to those nearby (i.e., sounds deemed
relevant by the ontological framework) in the MDS. These con-
nections allow the playback of local sounds to often be preceded
and/or succeeded by relevant sounds. The triangulation, however,
also makes some connections between sounds considered irrele-
vant to one another, but the inclusion of such connections can help
to ensure that actant processes do not always concentrate near cer-
tain nodes when the local sounds are spread in the MDS. Use of
Delaunay triangulation also guarantees that every vertex will be
connected to at least two other vertices, which can help to prevent
repetition.

The desired density of sounds is specified to be inversely re-
lated to the distance between the sound’s location of recording and
the user’s virtual location. Currently, we implement this relation as
a Gaussian function, referring to the standard deviation as the “lis-
tening radius,” which sets the size (in surface area) of the region
to be explored. The total density of all sounds may be adjusted
(so that soundscapes are not overly sparse or dense), perhaps most
usefully to a constant value. As described in Section 3.1, specifica-
tion of the densities determines the values of the transition times,
but requires transition probabilities to be provided. The probabil-
ities may be set arbitrarily, but the choice of probability distribu-
tion will affect the achievable densities of sounds. Currently, we
set the probabilities so that they may further “encourage” the ac-
tant process to travel to local sounds. We achieve this by setting
the transition probabilities between nodes such that the ratios be-
tween the probabilities of edges emanating from a node are equal
to the ratios of the desired densities of the nodes toward which
they are directed. In practice, we have observed that our current
distribution scheme typically provides better actual densities than
a uniform distribution.

As this method of soundscape synthesis only requires a virtual
location as input when sounds and their corresponding ontological
framework are available, it may be applied to various interactions,
static or dynamic. Presently, we have created an offline interaction
that exactly implements our method of automated design. We have
also used this scheme (with sub-optimal calculation of the tran-
sition times) in an interactive map, to allow virtual soundwalks,
where the network’s parameters are periodically updated as the
virtual location is changed. This map is also a component of a
larger social networking website we are developing that can aid in
the collection and tagging of sounds.

4. SOUNDWALKS: AN APPLICATION

We are currently developing a social network website, called
“Soundwalks” (http://www.soundwalks.org), to facilitate the col-
lection and re-sonification of sounds and community information.
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Through this website, we aim to gather sounds to extensively
represent geographic sound activity, and especially where there
are too few or too many sounds, utilize user-provided informa-
tion to determine the importance of individual sounds in the re-
sonification of geographic sound activity. On the website, users
can upload recorded sounds along with GPS data and provide tags
to any sounds. Information, including plots of acoustic features
over time, for individual sounds is availabe to view. The site also
features an interactive map, similar to systems such as [3, 4, 5, 27],
in which the location of sound recordings are marked with icons.
With these icons, users can listen to the recordings or retrieve rel-
evant data about them. In addition to allowing users to inspect and
playback individual sounds, our map has a “virtual soundwalk”
mode that allows users to listen to synthesized soundscapes by
moving a token across the map. The following subsections de-
scribe the major components of the website.

4.1. Sound Capture and Organization

Presently, sounds in our database have been gathered via mobile
sound recording equipment used in conjunction with GPS record-
ing devices. Recordings, which range from short transient events
to minute-long soundscapes, consist of both selective recordings
and those extracted by automated event segmentation from contin-
uous recordings [19]. An interface allows the uploading of the
sounds and GPS data from real soundwalks. After uploading,
acoustic feature analysis is performed on the sounds, and they are
added to the database and ontological framework. To use exist-
ing technology to make the capture and uploading of soundwalks
easier and more accessible, we are currently developing a mobile
phone application for concurrently recording sounds, GPS data,
and any other relevant information (e.g., time).

Once a soundwalk is uploaded and analyzed, users may see a
list of sounds from the soundwalk and a small map showing where
the sounds were recorded. Each sound may be individually in-
spected by clicking to navigate to a page that presents all current
information about the sound. This includes typical computer-file
relevant data (e.g., size, creation time) but additionally displays
plots of acoustic feature data and a tag cloud (to which the user
may contribute).

4.2. Interaction

An interactive audiovisual display, in the form of a map, is the
integral component of our application. This map provides a ge-
ographic view of the recordings, displayed as icons at their lo-
cation of recording on the map. To provide a visual cue of
sound content, each icon is colored by mapping its location in the
two-dimensional ontological framework MDS to a hue-saturation
space. Similarly, all tags on the website are colored by their loca-
tion in the MDS.

As a user navigates through the map, sound dots within a cer-
tain distance threshold, as determined by the map zoom level, will
merge together as clusters represented as colored dots. The color
and the radius of the cluster are dynamically adjusted by calcu-
lating the mean of colors and the number of the child sounds, re-
spectively. When the user clicks on a sound icon, an information
window will appear, displaying tags and other information about
the recording along with an option to play the sound.

Users may also navigate the map using a virtual soundwalk
mode, “scrubbing” a virtual token across the map, creating a vir-
tual soundscape. The soundwalk mode has a variable “listening
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radius” that may be thought of as the radius of a circle that con-
tains the sounds most expected to be heard. It is effectively the size
of the area considered in creating the soundscape. The listening ra-
dius may be varied from small to large so as to create soundscapes
that range from simulating observable soundscapes at specified lo-
cations to providing sonic summaries of large geographic regions.
The soundscape is created from an automatically generated MTN
(as specified in Section 3), using a single actant process. Periodic
updates of the network parameters are made to adapt to the user’s
movement. The actant process (which is initialized to the sound
recorded nearest the virtual location) functions continuously, us-
ing the MTN as it is updated. A screenshot of the interactive map
(with an open information window) in the virtual soundwalk mode
appears in Figure 5.

5. RESULTS

The described system has thus far been informally reviewed by
select users and the authors with generally favorable assessments.
Our database is presently sparsely populated with sounds recorded
in a university environment particularly rich with human activ-
ity, traffic (both ground and air), and birds. Using our interac-
tion, we have noted that in exploring areas with few recordings,
the inclusion of sounds from elsewhere has provided a soundscape
we believe to be indicative of the areas with which we are famil-
iar. The most frequent problem we have observed is the inclu-
sion of keynote sounds (e.g., the beep of a light rail car, or the
cheer of a stadium’s crowd) in inappropriate areas. Additionally,
some sounds are played too frequently. More sounds and users are
needed to thoroughly assess how our method of soundscape design
can perform across differing communities and with a dense collec-
tion of sounds, but present results are promising. Formal listening
tests are planned to assess the quality of our synthesized sound-
scapes, both in comparison to actual recorded soundscapes and in
terms of community knowledge.

6. CONCLUSIONS AND FUTURE WORK

We have presented a system for the automated re-sonification of
geographic sound activity. This re-sonification takes advantage of
an ontological framework we have developed that uses acoustic,
semantic, and social information that is largely defined by the com-
munity. Additionally, we have developed a website application
that implements our system for soundscape synthesis. Listening
tests and user studies are needed to fully assess our methodology
and application.

Areas of future research include use of time data (to provide
sound summaries of different points in time) and possible per-
sonalization of soundscapes by tracking user activity or prefer-
ences. Note that given our current soundscape design method, if
certain sounds are precluded (filtered out by time or other data),
the MTN may be easily re-designed. Other possible extensions
include application of spatialization/reverb effects to enhance the
“sense of place” and separate synthesis techniques for different
sound types (keynotes, signals, soundmarks), possibly classified
by users. Also, we consider the possibility of using geographic-
specific information from other sources (such as directory listings
or business review sites) to supplement our evaluation of the activ-
ity in a space.
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