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ABSTRACT

We present entropy sonification, a technique to bring interesting
data to the foreground of a sonification and push uninteresting data
into the background. To achieve this, the data is modeled as an in-
formation source, and the underlying sonification is converted into
sound grains. Information-theoretic attributes of the data are used
to determine the amplitude envelope and duration of the grains.
The information source model adds an additional avenue for con-
trol. By altering the information source model, one can focus on
different aspects of the data via entropy zooming.

[Keywords: Sonification Design, Interaction Design, Information
Theory, Granular Synthesis]

1. INTRODUCTION

How should a sonification command the user’s attention? It is this
question that motivates the present research. Think of an automo-
bile engine. When driving a car, even one we are not familiar with,
we quickly become acquainted with the sound of its properly func-
tioning engine. Once we have reached that point, we do not have
to actively pay attention to the engine sound anymore because it
provides us little information. But when something is wrong, the
engine is revving too high, for example, we immediately become
aware of the sound again and intuitively know how to react.

It is probably fair to say that creating a sonification that en-
ables a similarly intuitive interaction between the user and the data
is the goal of many, if not all, sonification techniques. That is, the
sonic feedback provided by a sonification should be rich enough
that a user who is well acquainted with it immediately understands
its meaning and automatically knows how to react.

Some sonification designs focus on creating richness in the
translation of data to sound and trust that this richness carries over
and supports an intuitive interaction with the data once the user has
learned to interpret the sonification. This is a reasonable approach:
after all, in the example above, the sound of the automobile engine
has not been designed to optimize communication with the user.
The communication is a byproduct of the users familiarity with
the mode of interaction.

Along these lines, de Campo proposes a general framework
for designing sonifications with the aim that “structures/patterns
in the data (which are not known beforehand) emerge as percep-
tual entities in the sound which jump to the foreground...” [2].
In this framework, the way data communicates and emerges as a
perceptual entity is a byproduct of considering the dimensionality
and sampling rate of the data with the desired number of streams
of output and picking an appropriate sonification technique on that
basis.

This is a perfectly legitimate approach. Other sonification de-
signs, however, directly confront the issue of interaction and com-
munication. In the development of auditory icons, Gaver ([4], Sec-
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tion 3) argues for using everyday sounds that are already familiar
to the user and argues against mapping data parameters to musical
parameters precisely because everyday sounds can be intuitively
interpreted more easily.

As with Gaver’s work, the present research is concerned with
designing a sonification that can be understood by an audience
with little or no training. This work was developed to support a
sound installation presenting a sonification in an art museum for
an audience that is not necessarily familiar with the auditory dis-
play of data and does not have the time to thoroughly acquaint
themselves with the sonification. One possible response is to sim-
plify the conversion of data to sound in the hope that this makes
the sonification more accessible. This, however, runs the risk that
the sonic material then becomes too meager and is both boring to
a lay audience and insufficient for conveying the data to an expert
one.

We have chosen to retain the full multi-dimensional complex-
ity of the sonification and focus instead on drawing the listeners’
attention to the interesting elements of the data set. So even if the
listener does not necessarily know what the sound is telling him or
her about the data, s/he at least knows what to pay attention to. The
technique for doing this is entropy sonification. It is a way of guid-
ing the listener to the significant information in the data set using
rhythmic variation and accentuation, a standard tool from music
composition and therefore very likely familiar to many listeners.

We present entropy sonification by first providing motivation
(Section 2), and then describing the necessary information theory
background (Section 3) before giving a precise definition (Section
4) and two illustrative examples (Sections 5 and 6). Entropy soni-
fication adds an additional means of control: the description of the
data as an information source. Section 7 considers the selection
of different information source descriptions for one data set and
introduces entropy zooming.

2. ENTROPY SONIFICATION

Entropy sonification is based on the following assumptions about
the way sound should provide feedback about a system: a working
system always makes sound; this sound normally disappears into
the background and becomes insistent only when something is ab-
normal or amiss. These assumptions are restated and summarized
in Table 1.

The automobile example presented above conforms to these
assumptions. In this case, though, the design of the engine sound
itself does nothing to support this type of feedback: the human
brain must do all the work to push the engine sound into the back-
ground or foreground. We, on the other hand, would like to design
a sonification that does its best to provide clues as to what is im-
portant and what can be ignored.

In order to realize this, we need a measure that determines,
given some data, which elements are typical and which ones are
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Figure 1: Schematic Depiction of Entropy Sonification. Amplitude
and duration are functions of the ratio of information content to
information entropy.

1. Elements (of a data set or event stream) that are typical
should be heard, but unobtrusive

2. Elements that are atypical should be highlighted, but within
the constraints of the sonification

Table 1: Entropy Sonification Goals

unexpected. Information theory is one possible framework for
quantifying the amount of “typicalness” or “unexpectedness” of
a data point.

Information theory treats data as the product of an informa-
tion source, which is simply modeled as a stochastic process ([14],
section on discrete noiseless systems). This can be justifiably crit-
icized as a gross oversimplification. Nonetheless, information the-
ory has been successfully applied to a variety of problems in data
transmission and compression and has proven to be a powerful
framework for creating and analyzing algorithms for communicat-
ing information.

The information source model forms the basis of entropy soni-
fication. This model is used to “tell” the sonification which data
points to highlight and which ones to push into the background.
The highlighting/backgrounding of data points is accomplished
though rhythmic variation: important points are accented and have
a longer duration than others. Rhythmic variation was chosen
since it is known that rthythm is a more salient aspect of music
cognition than melody or timbre. Dowling and Harwood summa-
rize research on the importance of rthythm vs. melody as follows:
“It is noteworthy that the rhythmic aspects of these stimuli over-
rode their pitch-pattern aspects in determining listeners’ responses.
This clearly demonstrates the importance of rhythm in music cog-
nition.” ([3] p. 193)

To control rhythmic variation, we need to vary the loudness,
duration, and attack of the sound. Granular synthesis is a natural
technique for realizing this. The urparameters of a grain are dura-
tion and amplitude envelope or window (Roads’ Microsound [13],
discussion in Chapter 3), which map perfectly to the variables we
need to control. Figure 1 presents a graphical depiction of this
scheme.

One final issue must be settled — the order in which the grains
are played. In some cases, as in the examples we present, there is
a natural order to the data which can be used by the sonification
as well. In situations where no natural order exists, an ordering
must be artificially produced, for example, using the distance from
a user selected point.

3. INFORMATION THEORY BACKGROUND

We provide the minimum fundamentals of information theory nec-
essary for the presentation of the sonification technique. For a
more extensive treatment, we refer the reader to the source, Shan-
non and Weaver’s The Mathematical Theory of Communication
[14], or David MacKay’s Information Theory, Inference, and Learn-
ing Algorithms [8] for a broader and more modern presentation.

An information source X is determined by two sets of N
elements: an alphabet Ax = {ai,as,...,an}, which defines
the set of possible values, and a probability distribution Px =
{p1,p2, ..., pn }, which defines a probability for each element of
Ax. We use the notation P(a) to denote the probability of an
element of the alphabet. In particular, P(a;) = p;.

The Shannon information content of an element a of the
alphabet A, is defined as

1
h(a) = logs ——. 1
(a) 92 Pla) (L
We will just use “information content” or “information” to
mean Shannon information content.
The information entropy of an information source X is de-
fined as

H(X)= Y Pla)loga 5~ =

P = 2 P@hl@) @
a€Ax

a€Ax

In other words, the information entropy is the expected value,
or average, of information over the information source.

4. SONIFICATION DESIGN

Given an information source, X, and a data set or event stream, F,
which uses the alphabet A x, we define the entropy sonification of
E as a granular synthesis process that generates a grain for each
element of E. Each grain has the property that its duration and
volume are functions of the ratio of information to entropy. We do
not make any other requirements on the content of the grain.

Thus, duration and volume are defined by functions f and g,
respectively:

duration of grain = duration(z) = f(h(z)/H(X)) ()
volume of grain = volume(z) = g(h(z)/H(X)) (4)

4.1. Sonification Duration

Let us consider the special case where the duration function is mul-
tiplication by a constant, d:

, _ B
duration(z) = dH(X) ®)
In this case, the expected value of the duration of a grain is:
. d
E[duration] = X Z P(a)h(a) =d (6)

a€Ax

Thus, given N points of data, e;...en, the expected length of
the sonification is:

N N
Ellength] = Z Elduration(e;)] = Z d=Nd ()
i=1

i=1
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In other words, if grains are played one after another without
overlap, the total duration of the sonification should be the duration
per grain times the number of data points, assuming the informa-
tion source accurately represents the data. This is a nice property
which can be used to gauge the accuracy of the information source
description.

4.2. Uniform Distribution

Another special case to consider is an information source based
on the uniform distribution; thus all elements of the alphabet have
equal probability. Using the notation | A x | to represent the number
of elements in Ax, this gives the following expressions for infor-
mation content of an element of the alphabet and entropy of the
information source:

h(a):logzﬁ =loga|Ax|,a € Ax 8)
H(X)= > P(a)h(a) = logs| Ax| )
a€Ax

Since every symbol has the same information, which is equal
to the entropy of the information source, this results in a sonifi-
cation in which every grain has the same duration and envelope.
This information source model, the uniform information source, is
useful as a basis for comparison.

4.3. Examples and Limitations

In the following two sections, we present examples of entropy
sonification. For the purposes of exposition, we restrict ourselves
to the simple case of discrete information sources and two dimen-
sional data sets. This is not a limitation of the theory, but a desire
to keep the exposition simple. Entropy sonification can be applied
to any dimensionality of data; only a description of the data as an
information source is necessary.

Our examples use simple histograms as the basis of information-
source models. In general, any stochastic process can serve as an
information source. And though we only present and discuss dis-
crete information sources, the theory extends to continuous infor-
mation sources [14], and entropy sonification extends naturally to
this situation as well.

5. EXAMPLE 1: TEXT

Taking our lead from Claude Shannon, we first turn our attention
to a sonification of English-language text. Text has two attributes
that make it a good candidate for entropy sonification: it is a dis-
crete information source, as opposed to a continuous information
source such as one defined by a Gaussian distribution; and letter
frequency tables to define the model are widely available.

The source code and audio for this example may be down-
loaded from our web site [12].

5.1. Data

The “data,” in this case text, is taken from the beginning of Thomas
Pynchon’s Gravity’s Rainbow [11]:

A screaming comes across the sky. It has happened
before, but there is nothing to compare it to now.

It is too late. The Evacuation still proceeds, but it’s
all theatre. There are no lights inside the cars. No
light anywhere. Above him lift girders old as an iron
queen, and glass somewhere far above that would let
the light of day through. But it’s night. He’s afraid

of the way the glass will fall — soon — it will be a
spectacle: the fall of a crystal palace. But coming
down in total blackout, without one glint of light,
only great invisible crashing.

5.2. Grain Waveform Design

The text sonification architecture is implemented in version 3 of
James McCartney’s programming language, SuperCollider [9]. Though
this is a sonification, not a text-to-speech system, it does take a few
cues from speech synthesis. Letters are converted to sound differ-
ently based on whether the letter is a vowel or consonant. Vowels
are synthesized as a combination of a fundamental frequency and
two formants with frequencies specified by Peterson and Barney’s
table [10]. Consonants are synthesized as filtered noise.

The uniform information source applied to this grain design
yields the sonification displayed in Figure 2.

WMMMMMWWWMMMMMMW

Figure 2: Text Sonification Using the Uniform Distribution in Fre-
quency and Time Domains; Duration: 0:34

5.3. Model

Using a letter frequency table [15] that provides frequencies for
27 characters, the 26 letters of the English alphabet plus space,
we can compute the information content for each letter, plus the
information entropy for the alphabet as a whole, as displayed on
the next page in Figure 4. In our model, we ignore punctuation
marks such as commas, periods, etc.

This model applied to the text produces the sonification shown
here in Figure 3.

sl i et dieestietile

Figure 3: Text Sonification in Frequency and Time Domains; Du-
ration: 0:37. Letters with lower probability stand out, in particular
the “q” near the middle of the sonification.

6. EXAMPLE 2: TED SPREAD

This example is presents a sonification of the TED spread. The
TED spread is a measure of the stress or risk in the banking system
[17]. One way to measure stress in the banking system is to look at
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Character Probability Information

[1 0.190 2.393
E 0.102 3.298
T 0.074 3.762
A 0.066 3.919
o 0.061 4.035
| 0.056 4.153
N 0.056 4.166
H 0.054 4.206
S 0.051 4.299
R 0.046 4.449
D 0.037 4.760
L 0.033 4.943
U 0.023 5.455
M 0.021 5.608
C 0.019 5.703
w 0.019 5.718
F 0.018 5.837
Y 0.017 5.921
G 0.016 5.957
P 0.013 6.254
B 0.012 6.442
\ 0.009 6.828
K 0.007 7.243
X 0.001 9.480
J 0.001 10.288
Q 0.001 10.288
z 0.001 10.966
Entropy 4.078

Figure 4: English Letter Probabilities and Information

the difference between the interest rates banks charge one another
when lending money to each other and the interest rate provided
by a “low-risk” investment. If banks are safe and trust one another,
this difference should be small.

As with the previous example, the source code and audio may
be downloaded from our web site [12].

6.1. Data

The TED compares the returns provided by U.S. T-Bills, the low-
risk investment, with the LIBOR (London Interbank Offered Rate)
rate banks charge one another (this was formerly referred to as a
EuroDollar contract; the names “T-Bill” and “EuroDollar” are the
source of the name “TED”). Current and historical data necessary
to compute the TED spread is available from the U.S. Federal Re-
serve [1]. This data is graphed in Figure 5.

W L P

% i o

o . . L Vasaast .
1971-01-08 1980-08-01 1990-03-02 1999-10-01 2009-01-0:

Figure 5: The Weekly TED Spread, 1971 — 2009

6.2. Grain Waveform Design

Grains are noise filtered by two bandpass filters, one for each com-
ponent of the TED Spread. The center frequencies of the filters are
determined by the interest rate on T-Bills and LIBOR contracts, re-
spectively. The quality, Q, parameter of the filter and stereo pan are
determined by the value of the TED Spread itself. The smaller the
TED Spread, the smaller the Q value and the narrower the stereo
separation.

The sonification in Figure 6 is the result of this grain design
and the uniform information source.

Figure 6: TED Sonification Using the Uniform Distribution in Fre-
quency and Time Domains, Duration: 2:04

6.3. Model

To apply entropy sonification, we need a model of the TED spread
as an information source, which we construct with the help of a
histogram. One could construct a more precise model, but even
this simple one yields a sonification that brings out many salient
features of the data set.

Figure 7 shows the distribution of values in the TED spread
series. For the purposes of computing information content, we
concern ourselves solely with which band in the histogram each
value falls. This model is summarized in Figure 8.

Figure 7: A Histogram of the TED Spread. The x-axis is labeled
with the center of each bin; the y-axis is the number of values that
fall within the bin.

The resulting sonification is shown in Figure 9.

7. CONTRIVED MODELS

In the examples above, we have constructed information sources
based on empirical analysis of the subject of the sonification. This
is not the only way to produce an information source. In some
situations, there might be an a priori model derived from other
considerations. Another possibility is the construction of a model
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Bin Bin Max Probability  Information
| 0.63 0.48 1.05
2 1.25 0.26 1.94
3 1.88 0.11 3.18
4 2.51 0.06 4.10
5 3.14 0.05 441
6 3.76 0.02 5.47
7 4.39 0.01 6.72
8 5.02 0.005 7.64
9 5.64 0.002 8.64
10 6.27 0.002 8.97
Entropy 2.08

Figure 8: TED Bin Probabilities and Information

B -

Figure 9: TED Sonification in Frequency and Time Domains; Du-
ration: 1:57

that is intentionally false for the purpose of focusing on a particular
aspect of the data set.

7.1. Entropy Zooming

The goal of entropy sonification is to make interesting elements
of a data set stand out. An artifact of using Shannon information
as the basis for entropy sonification is the implicit assumption that
interesting elements are rare ones. This may not actually be the
case. The interesting elements could actually be the common ones,
and the rare ones might be uninteresting.

This problem is solved with entropy zooming. Entropy zoom-
ing involves constructing a model of a data set as an information
source with the goal of bringing out particular characteristics of
the data. We can do this by starting with an existing model of the
data (e.g., one derived from analysis) and reducing the probabil-
ity of the data with the characteristics we want to focus on and
increasing the probability of the other data.

To illustrate this, we take the TED spread example and define
a new information source model to focus on the smaller values
of the TED spread by making them less likely according to our
new, “zoomed” model. This gives us a new model, summarized in
Figure 10, which results in the sonification in Figure 11.

8. ENTROPY SONIFICATION AND MODEL-BASED
SONIFICATION

Hermann and Ritter provide a taxonomy of sonification techniques
[6], breaking them down into the following categories:

1. Auditory Icons

2. Earcons

038 1 1.01 164, 226 289 352 415 477 5534 6.02 ¢

Figure 10: Alternative Histogram of the TED Spread for Zooming

Figure 11: Zoomed TED Sonification in Frequency and Time Do-
mains; Duration: 8:34

3. Audification
4. Parameter Mapping
5. Model-Based Sonification

Entropy sonification is most similar to parameter mapping, but
it is different in two significant ways. First, entropy sonification
does not map data points to sound-synthesis parameters; rather,
it maps information-theoretic properties of data points to sound-
synthesis parameters. Second, whereas choosing from the tech-
niques listed above is a mutually exclusive choice, entropy soni-
fication may be used in combination with any other sonification
technique.

In this capacity, the combination of entropy sonification and
model-based sonification presents a particularly interesting case
study. The goal of model-based sonification is to interpret data
such that it becomes a kind of “sounding instrument” [6]. There
are a variety of ways to achieve this, as demonstrated by T.Hermann
in his dissertation [7]. In fact, one of the proposed models, the
Markov chain Monte Carlo (McMC) simulation sonification model,
actually incorporates a kind of entropy sonification: “The ampli-
tude is used to communicate the ‘interestingness’ of the mode by
using loud grains for modes which are rarely visited” (ibid. p.
105).

But whereas the use of amplitude in the McMC simulation
sonification model is an artifact of that particular model design,
the technique described in this paper may be applied to any model-
based sonification. For example, crystallization sonification [5] is
a particularly good candidate to augment with entropy sonifica-
tion. Crystallization sonification defines a process for generating
a timbre, given a data set in R™ and a point in R™. That is to
say, crystallization sonification is a technique for creating an in-
strument from a data set. Entropy sonification, on the other hand,
generates a thythm from a data set, or, in other words, a score in-
dependent of the instrument used to play it. This appraisal applies

ICADO09-5



Proceedings of the 15" International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

generally to the two techniques: model-based sonification defines
an instrument; entropy sonification defines a score. This is pre-
cisely what makes their combined use potentially so interesting.

9. CONCLUSIONS AND FUTURE WORK

The research described in this paper, entropy sonification, presents
a technique for focusing the user’s attention on particularly inter-
esting portions of a sonification. It accomplishes this systemati-
cally, using well-understood ideas from information theory. The
mechanics of the technique make it possible to define and apply
different measures of what is interesting, allowing entropy zoom-
ing.

Though the research is presented here in an idealized form,
it has been developed to support eMotion, a multi-disciplinary re-
search project at the Institut fiir Design- und Kunstforschung in
the Hochschule fiir Gestaltung und Kunst Basel FHNW [16]. In
this project, we are investigating how museumgoers interact with
artworks by collecting realtime data from visitors to the Kunst-
museum in St. Gallen, Switzerland as they wander through an
exhibition conceived specifically for this purpose in June and July
2009. In addition to being stored for later analysis, the data will
be presented to the visitors in the form of a visual projection and
sound installation. We expect to have more to report in the future
about our experience using entropy sonification in the context of
this sound installation.

Furthermore, we think information theory is a theoretical frame-
work with unexplored potential for not just designing sonifica-
tions, as we have done here, but also analyzing and comparing
sonification techniques. Information theory enjoyed a period of

popularity in music theory, with prominent exponents such as Leonard

Meyer. It thus seems plausible that an undertaking which applies
information theory to the realm of auditory display could also yield
illuminating results.
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