
VERSUM: AUDIOVISUAL COMPOSING IN 3D

Tarik Barri

me@tarikbarri.nl

ABSTRACT

This paper introduces the new audiovisual sequencing

system “Versum” that allows users to compose in three

dimensions. First, the conceptual soil from which this

system has sprung is discussed. Secondly, the basic

concepts with which Versum operates are explained,

providing a general idea of what is meant by sequencing

in three dimensions and explaining what compositions

made in Versum can look and sound like. Thirdly, the

practical ways in which a composer can use Versum to

make his own audiovisual compositions are presented by

means of a more detailed description of the different

graphical user interface elements. Fourthly the

consequences of Versum’s properties with regard to the

composing process are discussed. Then a short

description is given of the modular structure of the

software underlying Versum. Finally, several foresights

regarding the directions in which Versum will continue

to develop in the near future are presented.

1. INTRODUCTION

Versum is an audiovisual sequencer. Whereas most se-

quencers such as Ableton Live and Logic use two-dimen-

sional images to represent sequences of notes and

sounds, Versum uses three-dimensional representations

and allows the user to sequence in three dimensions. That

is, in contrast with the conventional methods of two-

dimensional musical notation and execution of the

sounds from left to right, the sounds in Versum can be

heard in any order that corresponds to a movement that

can be made in a three-dimensional space.

 For example, the sounds represented in Versum can

not only be heard from left to right, they can also be

heard from right to left, from up to down, form back to

forth, in a spiraling motion, etc. This allows for various

compositions in sounds and images, in which the

representation of the music becomes as much an

aesthetic and important part of the composition as the

music itself. When shown to an audience, these represen-

tations do not only provide its members with an

aesthetical experience, but also enable a deep and

intuitive understanding of the compositional structures

underlying the music.

2. PHILOSOPHY

2.1. Breaking down barriers

Versum was born out of a need to break down the

barriers that usually exist between an electronical

musical composer and his audience. I felt that by letting

the audience literally see how the composer works and

how the composition is constructed, great value could be

added to the listening experience. A deeper under-

standing of the structures underlying a composition

would then cause a greater personal sense of engage-

ment. This eventually resulted in the creation of Versum.

 Wanting to have the audience understand what’s

going on in a composition however does not imply that

the goal is to make all musical and visual events

predictable. On the contrary, having the audience create

expectations based upon their understanding of the

perceived audiovisual structures can provide the basis for

surprises, which are caused by the composer’s decision

to deny these expectations. Both these expectations

themselves and how they are resolved (or not) influence

the way people perceive tension in music [1].

2.2. Audiovisual tension

Perceived melodies and rhythmical patterns can instigate

expectations in the listener. For example, one might

expect the time interval between the last and the next

beat to be the same as the one that has been heard

between the previous two. Or in a series of tones rising in

pitch, it may be expected that the pitch of the next tone

will also be higher than the last one. Musical tension can

be created when the composer plays with these

expectancies, by denying them at some times and

realizing them at others. To paraphrase music theorist

Leonard Meyer: when expected events do not occur, or

when they are delayed, these expectancies produce a

state of suspense in the listener. It is this suspense that

music cannot do without [2].

 What happens in Versum is that the listener has not

only his ears to base predictions upon, but also his eyes.

As a consequence it is not only auditory, but also visual

elements that play a role in the suspense that can be

created. Therefore Versum enables the composer to build

up a tension that is specifically audiovisual.

 In practice, the composer can deny expectations

made based upon visual cues in several ways which do

not refute the logic of the consistent link between sound

and image, but still result in unexpected audiovisual

events. The tools with which this can be done are used to

build up or resolve audiovisual tensions, in order to

construct a specifically audiovisual narrative.

2.3. Spatial relationships

In clinical experimental settings spatial relationships

between sounds have frequently been shown to interact

with perceived musical attributes in systematic ways [3].

The three-dimensional nature of both Versum’s imagery

and sounds gives the composer powerful tools to

explicitly make use of - and experiment with - the

musical implications of spatial distributions of sounds. In

a very direct, simple and intuitive manner any complex

spatial distribution can be created and altered, with clear

visual feedback that enables the composer to easily keep

track of the different positions where the sounds are

coming from.

3. SEEING AND HEARING VERSUM

3.1. Entities

After starting up the Versum software, the user sees a

depiction of an empty three-dimensional virtual universe

that can be populated by audiovisual entities. These

entities are sound generating three-dimensional virtual

bodies. There are currently two main types of entities,

namely spheres (see Figure 1) and lines (see Figure 2).

They come in various colors and sizes and can produce a

wide variety of sounds. Exactly how an entity sounds and

what it looks like is defined by the specific values of its

parameters. Many of these parameters influence both the

sonic and the visual output, making sound and image

analog to each other. For instance, smaller entities

produce a sound with a smaller amplitude than bigger

entities do: size in the visual domain is analog to

amplitude in the auditory domain. An entity depicted

with a less smooth surface will produce a more noisy

sound (see Figure 3). Likewise, the parameters that

determine pitch, filter cutoff frequency and other

auditory properties each also have their specific influence

in the visual domain.

 The user of Versum can place these entities anywhere

in the virtual universe and can define relationships

between them in terms of motion. For instance, entity A

can have entity B orbiting around it, at a speed and radius

defined by the user. Entity B may also have another two

entities orbiting around it, and so forth. The ways in

which these movements and positions of entities

influence the perceived sound will be discussed in 3.2

and 3.3.

3.2. The actor

What will be heard and seen at any moment in time

depends on the position and angle of a moving virtual

camera with virtual microphones attached to it. This

camera with microphones is called the actor. The “Actor

Window” on the computer screen shows what the actor's

camera sees (see Figure 1 and 2).

 When an actor’s virtual microphone is in close

vicinity of an entity, the sound emitted by it will be

recorded. If the actor would then move further away

from the entity, the amplitude of the recorded sound

would become smaller. All the sounds that are recorded

by the actor’s microphones are sent to their corre-

sponding output channels.

Figure 2. The three windows generated by Versum,

showing lines.

For instance, let’s take an actor with two microphones,

one to the left and one to the right of the camera. If an

entity is then situated directly in front of the actor’s

camera, it will be seen in the center of view and both

microphones will record the sound with the same

amplitude. The sound of the left microphone is then sent

to the left output channel of the sound card and the sound

of the right microphone is sent to the right output

channel. The sound heard through both speakers will

have an equal amplitude. If the entity is situated to the

left of the actor, the left microphone records with a

greater amplitude and the sound coming from the left

speaker will therefore also have a greater amplitude.

 The actor may have any amount of microphones that

the user requires. If the user wants to use four outputs

instead of two, the actor’s number of microphones can

be set to four, with all of the recorded sounds of these

microphones sent to their respective output channels.

Theoretically any number of speakers may be used in this

manner, placed in front, behind, above and below the

listener. The computer’s processing speed and the type of

sound card are the only limiting factors in this respect.

 The actor has the ability to move and turn in any

direction. If we have several entities placed in front of

the actor’s camera at varying distances, and have the

actor move forward, it passes these entities one by one.

Figure 3. Example of a noisy entity, as seen in the

Actor Window

Figure 1. The three windows generated by Versum,

showing spheres.

!"#$%&'()*$+&,$)#%$-&'()*$+&

./0(1/#$%&'()*$+&

!"#$#$!%&

!"#$#$!%&

'(#)*&

!"#$%&'()*$+&,$)#%$-&'()*$+&

./0(1/#$%&'()*$+&

!"#$#$!%&2/-3$&344)&()&

)/0(1/#$%&+()*$+5&

!"#$#$!%&

'(#)*&

+!,-)$"#%&

6& 6&
&

 Because of the movement of the microphones and

changes that this movement causes in the recorded

amplitudes of the sounds, a melodic or rhythmical pattern

arises. Visually we see the sounds that are still to come at

a greater distance from the camera viewpoint, while the

sounds of the entities that are closer to the camera are

already audible. As the actor then moves further forward,

the entities which were previously audible come to lie

too far behind for the actor’s microphones to hear, and

other entities which were first seen but not heard, will

now be heard.

 To give another example, if we have the actor facing

an entity that is being orbited by another, we hear a

sound with a static amplitude coming from the entity in

the center. The rotating entity however is heard with a

constantly increasing and decreasing amplitude because

of the decreasing and increasing distance from the

actor’s microphones. Having several entities rotating the

central one at different speeds will in this manner

produce complex melodic or rhythmical patterns.

 In summary it is the combination of the properties

and positions of entities and the properties and position

of the actor that determines the whole auditory and

visual experience.

3.3. Sound speed

Versum also has a built in sound speed, meaning that

each entity’s sound is delayed by a time proportional to

the distance it has from each of the actor’s microphones.

When the actor travels past entities, the distance of an

entity to the microphones will decrease or increase with

time, and so will the delay time of the sound. When the

distance will decrease or increase at high speeds, this

changing of delay times will cause a clearly audible

Doppler effect, increasing a sense of movement in the

listener. At lower speeds the increasing and decreasing of

sound delays will cause subtle phasing effects, thus

bringing slight variations and liveliness to otherwise

more static and monotonous sounds.

4. USING VERSUM

4.1. The Control Window

Versum generates three output windows in total (see

Figure 1). The Actor Window, through which the

viewpoint of the actor can be seen, has already been

discussed above. Then there are also two graphical user

interface windows: the Control Window and the

Navigator Window.

 The Control Window contains interface elements

which enable the user to set specific parameters of the

entities such as pitch, noisiness, low pass cutoff fre-

quency, etc. Also the actor parameters can be set here,

such as the camera angle and the placement of the virtual

microphones. General parameters such as the main

tempo and the current time can also be adjusted in the

Control Window.

4.2. The Navigator Window

The Navigator Window contains a two dimensional map,

similar to the kind of map a radar would provide,

depicting a portion of the virtual universe, including the

positions of the actor and the entities. The Navigator

Window allows the user to zoom in and out, allowing for

both very detailed and very broad views of the positions

of entities, the actor and keypoints (which will be

discussed in 4.3). The view that this map provides can

also be rotated for any amount of degrees over any three-

dimensional axis to get an ideal view for any editing

situation.

 Within this map entities can be easily added, deleted,

copied, dragged and selected by using the mouse and

several keyboard shortcuts. Selecting an entity within this

map by clicking on it with the mouse enables the user to

edit its properties in the Control Window. Several func-

tions are also provided for editing the parameters and

arranging the positions of large numbers of entities at

once, so the user can decide for him self whether he

wants to compose on a large or small scale.

 The Navigator Window also allows the user to

quickly and easily move the position and camera angle of

the actor, thus changing what can be heard and what can

be seen in the Actor Window. This function proves to be

quite handy for experimenting with the consequences

that certain arrangements of entities and types of actor

movements have on the overall composition.

4.3. Keypoints

The freedom to create and change all the actor move-

ments, camera angles and entities on the spot encourages

the user to playfully experiment with the audiovisual

structures in space and time that can be created with the

software. This freedom on the other hand has the

potential disadvantage that it doesn’t allow for the

desired amount of accuracy in timing, velocity and direc-

tion of the actor’s movements, since it depends solely on

the user’s immediate input and is therefore restricted to

limitations such as the user’s reaction speed. To over-

come these limitations, keypoints can be used. These

provide a way of storing actor movements and their

timing. They enable the user to edit these movements in

minute detail to get a very precise control over an

audiovisual composition. The keypoints - which can be

seen in the Navigator Window - pinpoint exact points in

space and time, determining when the actor should be

where, and which direction the camera should be facing

at these points. When an audiovisual composition will

then be played from start to end, the actor will travel

from every keypoint to the next in the specified time

intervals until the last keypoint is reached.

5. CONSEQUENCES FOR COMPOSITIONS

The specific properties of Versum naturally lead to

compositions which are quite different from those made

in other systems. As a composer I have frequently used

Versum to make music and images to investigate what

it’s effect is on the compositional process.

 One of the most important aspects that came up

during the experiments with Versum was the fact that

this system provides the possibility for creating meta-

compositions (see Figure 4): any constellation of entities

can be heard in any order, coming from any position in

space, and heard with any amount of Doppler effect,

depending on the movements of the actor. This fact has

encouraged me often to play certain sequences

backwards, diagonally, in a smooth motion, with

staccato, jerky movements, etc. The unorthodox sonic

and visual results often sparked ideas that I wouldn’t

have come up with in other ways.

Figure 4. Example of a composition in Versum, as

seen in the Navigator Window.

 Another aspect that plays a big role in the composi-

tional process is that currently all the entities generate

continuous, monotonous sounds of which the perceived

volume only changes as the actor moves closer or further

away. In this sense all the sounds are timeless; only our

perception of their amplitude changes as the actor moves

in time. This often results in relatively high fade in and

fade out times. In general, as a consequence the

compositions have become quite ambient and drone-like,

consisting out of continuously altering blends of different

sounds coming from continuously changing directions.

 Versum’s ability to have certain entities rotate around

other entities, which themselves may also rotate around

others, has also lead to interesting compositional results.

The kind of rhythmical patterns which arise from these

rotations are unique to this system, and have also sparked

musical and visual ideas that wouldn’t have come up

otherwise.

6. THE SOFTWARE BEHIND VERSUM

On a software level, Versum consists of four separate

pieces of software written in different programming

languages, working together as one.

 First of all, there is the graphical user interface,

visible in the form of the Control- and Navigator

Window. This interface is written in Java with heavy use

of the Processing library
1
.

 Secondly, there is the core program, also written in

Java. Messages are sent from the interface to this core

and back by use of the User Datagram network Protocol

(UDP). The core program calculates the time, it keeps

track of all the positions of the entities, it determines the

exact speed at which the actor moves, it writes and opens

files, etc.

1See www.processing.org

 For the three-dimensional graphical output I use a

third program made in the Max/MSP/Jitter environment.

Via the “mxj” object in Max, messages are sent from the

core to the graphical objects within Max, producing the

moving images that are presented in the Actor Window.

 Finally, for calculating the sounds and sending them

to the computer’s sound card there is a fourth program

written in Supercollider. The core program sends

messages to this program via the Open Sound Control

network protocol (OSC), telling it what kind of sounds to

produce at any moment.

 Thanks to the UDP and OSC protocols for the

exchange of messages it was easily possible to split the

Versum software into these separate specialized pieces of

software. Making the software modular in this way has

had the great advantage of being able to employ all these

programming languages (Java, Supercollider, Max/MSP)

specifically for what they do best. None of these

languages by themselves would have been sufficient for

producing the end result so efficiently.

7. FUTURE DEVELOPMENT

An objective for the near future is to create the possibility

of having multiple composers work within the same

instance of Versum simultaneously. This would mean

that each composer has his own interface and his own

actor to hear and see the virtual universe with. Thanks to

the fact that Versum actually consists of several modules

working together, and the fact that these modules

communicate via network protocols, there is no necessity

for all of them to run on the same computer. One could

therefore have multiple interfaces running on separate

computers connected to the same instance of Versum via

network cables or a wireless network. Composers could

then work together on populating a virtual universe with

entities, creating their own audiovisual constellations or

edit those of each other.

 When this feature is implemented, Versum’s ability

to have several actors roaming within the same space

would mean that audience members could see and hear

the same instance of Versum from different auditory and

visual perspectives simultaneously, with each actor

travelling a separate path and generating a unique

composition in the process.

8. REFERENCES

[1] Farbood, M. ''A Quantitative, Parametric Model of

Musical Tension'', PhD thesis, MIT, 2006, p. 24.

[2] Meyer, L. B. Emotion and Meaning in Music.

Chicago: University of Chicago Press, 1956, pp.

26-27.

[3] Bornstein, M. H. Psychology and its Allied

Disciplines, vol 1. Hillsdale, NJ: Lawrence

Erlbaum Associates, 1984, p. 17

