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ABSTRACT

Existing symbolic music comparison systems generally consider
monophonic music or monophonic reduction of polyphonic music.
Adaptation of alignment algorithms to the music leads to accurate
systems, but extensions to polyphonic music arise new problems.
Indeed, a chord may match several notes, or the difference be-
tween two similar motifs may be a few swapped notes. Moreover,
it is difficult to set up the substitution scores between chords. In
this paper, we propose a general framework for polyphonic mu-
sic which permits to directly apply the substitution score scheme
set for monophonic music, and which allows new operations by
extending the operations proposed by Mongeau and Sankoff [1].
From a practical point of view, the limitations of the size of chords
and the number of notes that can be merged lead to a complexity
that remains quadratic.

1. INTRODUCTION

Automatically estimating the similarity between musical pieces is
one of the major open problems in music information retrieval re-
search area. One of the applications is content-based music re-
trieval, that consists of searching a musical piece in a database
given a short excerpt of music (query) [2]. Queries may be per-
fect, for example an exact excerpt of a piece. But it may also be
inexact, for example hummed or whistled, leading to slight time or
pitch deviations [3].

In this paper, we only consider symbolically encoded music.
Symbolic music is defined by musical events, such as beginnings
or endings of notes for example. Each note is then defined by a
few attributes such as pitch, duration or onset time.

Different representations for music and related algorithms for
comparison have been proposed. Geometric algorithms consider
geometric representations of music and compute the distance be-
tween objects [4]. Other representations consider music as se-
quence of symbols. Such representations allow the application of
algorithms adapted from string matching domain by computing the
best alignment between two pieces [5].

In order to compare polyphonic music, existing works gener-
ally require a monophonic reduction of a polyphonic piece [6], for
instance by considering the note with the highest pitch. In order to
avoid such assumption, we propose here to study algorithms that
take into account all the notes of a polyphonic musical piece.

Adaptations of alignment algorithms are difficult because the
representation applied for monophonic music induces several prob-
lems, in particular setting substitution scores that may become
very complex. In order to simplify algorithms, a new represen-
tation of polyphonic music has been proposed in [7]. Polyphonic
pieces are represented by a sequence of sets of symbol pairs. Fig.
1 shows an example of an excerpt of polyphonic music and its re-
lated representation. According to this representation, we propose
to study an algorithm computing the alignment between two poly-
phonic musical pieces, i.e. between two sequences of sets.

B4E4 G4 B4 D4 r4 C4 E4 G4 D2 A2 G8 B8 D8

Figure 1: Example of polyphonic musical score and its related
sequence of sets of notes. A note is represented by a pitch and a
length, and each note of a same chord belongs to the same set.

2. ALIGNING TWO MUSICS

2.1. General Sequence Alignment

Sequence alignment refers to a method that allows the computation
of a one-to-one mapping between symbols of two sequences t and
q that respects symbol order. Sequence alignment aims at finding
a mapping between symbols that maximizes the sum of scores. A
pair of two identical symbols in the mapping is called a match. A
pair of two different symbols is called a mismatch. Symbols not
involved into the mapping are called gaps. Scores, respectively
denoted by σ(ti, qj) and s(si, ε), are assigned to each pair (ti, qj)
of the mapping and gaps. Most famous variant of global alignment
(i.e. of the whole strings) are local alignment, which finds factors
of q and t having the best alignment score, and best fit, which finds
the factor of t having the best alignment score with q [8]. These
variants are computed in a similar way to global alignment and the
present work can be easily adapted to local and best-fit polyphonic
alignment. A dynamic programming algorithm allows computing
the optimal alignment and the corresponding score, denoted by
score(t, q), between two sequences t and q of respective size |t|
and |q| in O(|t| × |q|) time complexity and in O(min(|t|, |q|)) in
memory complexity [5].

When comparing monophonic music one limitation of align-
ment approach is that it only allows one-to-one association. How-
ever in musical piece a single note in one sequence may sometimes
be split into two or more notes in the second sequence. To avoid
this limitation, Mongeau and Sankoff [1] introduced the possibil-
ity to associate more than one note from one sequence to exactly
one note from the other sequence. We call this operation a merge.
The time complexity of the algorithm with the merge operation is
O((|t| × |q|)(|t| + |q|)). In practice, the number of consecutive
notes is bounded by a constant L which leads to a complexity of
O(|t| × |q| × L) [1].

2.2. Polyphonic Case

A lot of problems are arisen when dealing with polyphonic music
alignment. Actually, the definition of an alignment in the poly-
phonic case is not a straight forward application of the monophonic
comparison.

Since many notes may be played at the same time, relative
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Figure 2: Arpeggiated chord above, with its interpretation below.
The notes are played successively from the lowest to the highest
pitch, and not simultaneously.

encoding cannot be used. Thus, polyphonic music can be repre-
sented by a sequence of sets of notes. A set can contain a single
note or a chord. A direct consequence is that transpositions can-
not be treated by the relative encoding. This problem has been
addressed in [9] and requires to compute simultaneously multiple
matrices, one for each possible transposition value.

Furthermore, setting up scoring scheme in monophonic case
(i.e. fixing a score for two notes) is a difficult problem. This task
becomes harder when comparing two chords. Indeed, on one oc-
tave there are 12 possible pitch values for a chord made of a single
note (in practical applications, it is common to work only on one
octave), then 12×11 for two note chords or

`
12
p

´
for p note chords,

which means the scoring scheme will be represented by a matrix
of size 212 × 212.

Lastly, polyphony brings some new complex note rearrange-
ments. The most obvious example is when the notes of a chord are
played successively and not simultaneously. It is generally the case
when precisely analyzing the interpretation of a musical piece. The
automatic transcription may be made of separate notes instead of
simultaneous notes. Fig. 2 shows such an example. In the notation
score, the chord has to be arpeggiated: the related interpretation
is transcribed as successive notes. In this case, a comparison sys-
tem has to detect the similarity between the chords indicated in the
musical score and the successive notes interpreted.

More generally, we have to deal with notes/chords merging
and local rearrangements. For example, composers may choose
to swap a short sequence of the notes composing a theme. Fig.
3 shows three excerpts of a musical piece from Beethoven. Each
excerpt corresponds to the main motif. The first and the second
excerpts contain swapped notes of the main motif. For applica-
tion such as song structure discovery problem or automatic music
analysis, parts of a music (verse or chorus for example) may be
repeated with permuted notes.

3. POLYPHONIC ALIGNMENT

We propose a general algorithm to align two polyphonic pieces.
The main advantage of this algorithm is that it is based on a scoring
scheme for monophonic music.

3.1. Chord Comparison

In many cases, an arbitrary order is given to the notes composing
the chords of a musical sequence. To avoid this arbitrary choice,
one can consider chords as sets. The cost for substituting one chord
to another one leads to the problem of computing the best per-
mutation between both chords. Fig. 4 shows an example of two
cadences that sound similar, but that can be estimated as very dis-
similar because of the different order of the notes in the chords.

(a)

(b)

(c)

Figure 3: Similarity although permutations (a) Main motif of the
14th quatuor for piano in C# minor opus 131 from Beethoven.
The motif is composed by 4 notes (sequence (1 2 3 4)). (b) First
theme of the 7th movement. The 4 last notes of the two groups are
permuted notes of the main motif, sequence (1 4 3 2) and (1 4 2
3) (c) Second theme of the 7th movement. The 4 notes are again a
permutation of the main motif, sequence (3 2 4 1).

Figure 4: Similarity between inverted chords. These successive
two imperfect authentic cadences in C major are similar despite
the different order in the chords composing the cadences.

Considering no order and finding the best permutation allows the
estimation of a high similarity between these two sequences of
chords.

This optimization problem is actually a maximum score maxi-
mum bipartite matching problem and can be modeled as a weighted
maximum matching algorithm [10]. Given C1 and C2 two chords
of size n and m (we suppose n ≥ m), we construct a graph
G(v, w) = (V,E) as Fig. 5:

1. vertex set : V = {s, t, e}∪{s11, s21, . . . sn
1 }∪{s12, s22, . . . sm

2 },
where s is the source, t is the sink, {s11, s21, . . . sn

1 } and
{s12, s22, . . . sm

2 } are the notes of the chords C1 and C2 and
e represents ε;

2. edge set : (s, sk
1), (e, t), (sl

2, t) with a score 0, (sk
1 , s

l
2)

with score σ(sk
1 , s

l
2), and (sk

1 , e) with score σ(sk
1 , ε). All

the edges have capacity 1 except (e, t) which capacity is
n−m.

G is then a graph whose edges are labeled with integer capaci-
ties, non-negative costs in R, and the maximum flow f∗ = n+m.
The complexity of computing local cost is due to this maximum
cost maximum flow computation. This problem can be solved
by the Edmonds and Karp’s [10] algorithm improved by Tarjan
[11] whose complexity is O(|E||f∗| log2(|V |)). For our graph,
the maximum flow is f∗ = n + m, the edge number is |E| =
n×m+2n+2m+3 and the vertex number is |V | = n+m+4. Fi-
nally the complexity of the score computation between two chords
is bounded by O(n3× log2(n)) where n represents the maximum
number of notes in a chord. We denote by σbpg the score between
two chords.

In conclusion, computing alignment between t and q leads to
a total time complexity of O(|t| × |q| × C3 × log2(C)) where C
is the maximum number of notes in a chord in t or q. In practical
applications the parameter C is generally bounded by 4.
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Figure 5: Resolution of the optimal permutation as a maximum
cost flow problem.

3.2. Extending Mongeau-Sankoff Operations

As we already stated, an accurate algorithm for music alignment
must take into account local rearrangements. Actually, these rear-
rangements (see Fig. 3) can be more general than the ones treated
by Mongeau and Sankoff [1]. Indeed, notes can be permutated
(Fig. 3c) or simultaneously permutated and merged (Fig. 3b) al-
though the sequences of notes are still similar. We thus propose to
allow a new operation that merges sub-sequences of notes in both
sequences q and t simultaneously.

Music alignment between two sequences is then extended as
follow:

Definition 1 (Extended Music Alignment) Given two sequences
t and q of sets of symbols over Σ. A valid extended alignment Xa

between t and q is a set of pair of sub-sequence on t and q, that
is Xa = {((is, ie), (js, je))} and respects the following for all
((is, ie), (js, je)) ∈ Xa:

• 0 ≤ is < ie ≤ |t| and 0 ≤ js < je ≤ |q|
• ∀((i′s, i′e), (j′s, j

′
e)) ∈ Xa:

– i′s 6= is,

– if i′s < is then ie ≤ is and j′e ≤ js,

– if i′s > is then i′s ≥ ie and j′s ≥ je.

We define the setGt (resp. Gq) as the set of positions of t (resp. q)
not involved in Xa, that is

Gt = {0, . . . , |t| − 1}\
[

((is,ie),(js,je))∈Xa

{is . . . ie − 1}

The score associated with Xa is defined as follow:

S(Xa) =
X

((is,ie),(js,je))∈Xa

score(tis...ie , qjs...je)

+
X
i∈Gt

σ(ti, ε) +
X

j∈Gq

σ(ε, qj) (1)

The adaptation of the alignment algorithm is straightforward.
In the dynamic programming matrix, it consists in computing each
position M [i][j] from any position M [k][l] for 0 ≤ k < i, 0 ≤
l < j.

In order to compute the score(ti−k...i, qj−l...j) using a mono-
phonic scoring scheme. We propose to use the monophonic scor-
ing approach introduced in section 3.1 to compare chords. How-
ever in this case we are dealing with sequences of chords instead of
single chords. In the following, we present two different methods
to encode a sequence of chords into a single one.

{G4,B4}

{D2}

{A2}

{C2,G2} {C1,E1,B1}

a b
c d

e f

X

{G8,D8,B8}

Figure 6: Example of merged notes that must be considered for
one step (X) of the alignment algorithm.

General scoring scheme: Let consider the sequence of chords
tis...ie , we define the set P of all different pitches represented in
this sequence. For each pitch p in P , we associate a duration corre-
sponding to the time elapsed from the beginning of the first occur-
rence of p in tis...ie to the end of the last occurrence of p in tis...ie .
For instance, let us consider the sub-sequence({G4, B4}, {D2},
{A2}, {G8, B8, D8}). The associated set P is {A,B,D,G}.
The duration associated to the pitch D is 12 which is indeed the
time elapsed from the beginning of D2 to the end of D8. Finally,
the chord built for this sub-sequence is {A2, B16, D12, G16}.

Once the chords corresponding to tis...ie and qjs...je are built,
the score is computed using σbpg (see section 3.1). Note that if the
user defines a penalty in the classical Mongeau Sankoff’s opera-
tion, this penalty is added to the final score in the same way.

Using the algorithm presented in 3.1, the time required to com-
pute the score of the caseM [i][j] isO(i× j×C3 log2(C)) where
C is maximum number of different pitches in the considered sub-
sequences. This lead to an overall complexity of O(|t|2 × |q|2 ×
C3 × log2(C)).
Pitch/duration scoring scheme: Let consider the following scor-
ing scheme between notes:

σ(n,m) = α× σp(pitch(n), pitch(m))

+ β × σd(duration(n), duration(m)) (2)

Where, scorep and scored are score functions respectively be-
tween pitches and durations, and α and β two constants. In that
case, the chord associated to a sub-sequence is P , the set of the dif-
ferent pitches that occurs in this sub-sequence. Hence the chords
are composed only by pitches, we use σp to weight the edges of the
bipartite graph to compare such chords. Finally, the score between
two sub-sequences is given by:

score(ti−k...i, qj−l...j) = α× σbpg(P,Q) + β × σd(K,L)

whereP (resp. Q) is the chord associated to ti−k...i (resp. qj−l...j)
and K (resp. L) is the time elapsed from beginning of ti−k (resp.
qj−l) to the end of ti−1 (resp. qj−1). For the merge operation, the
penalty is used in the same way.

Now let us consider the computation of M [i][j]. For example,
let us consider the computation of the position X represented in
Fig. 6. This score is obtained either:

• from f which implies the computation of scores σbpg({A},
{A,D, G}) and σd(2, 2) or,

• from ewhich implies the computation of σbpg({A}, {A,B,
D,G}) and σd(2, 3) or,

• from d which implies the computation of σbpg({A,D},
{A,D,G}) and σd(4, 2) or,

• from cwhich implies the computation of σbpg({A,D}, {A,
B,D,G}) and σd(4, 3) or,
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• from bwhich implies the computation of σbpg({A,B,D,G},
{A,D,G}) and σd(8, 2) or,

• from awhich implies the computation of σbpg({A,B,D,G},
{A,B,D,G}) and σd(8, 3).

One can observe that from one computation of σbpg to another
one, we just add vertices in the bipartite graph. So, it is not nec-
essary to recompute σbpg from scratch. Toroslu and Üçoluk [12]
give an incremental algorithm to compute the assignment problem
inO(V 2) where V is the number of vertices in the bipartite graph.
Using this algorithm in our approach the time complexity of the
computation of all possible merges for the case i, j is bounded by
O(
PC

i=1 i
2) = O(C3) where C is number of different pitches in

t0...i−1 and q0...j−1. The time complexity of the alignment be-
comes O(|t|2 × |q|2 × C3) where C is the number of different
pitches in t and q.

4. FIRST EXPERIMENTS AND CONCLUSION

During MIREX 2006 20061, the second task of the symbolic melodic
similarity contest consisted in retrieving the most similar pieces
from mostly polyphonic collections given a monophonic query.
Two collections were considered, and 11 queries (hummed or whis-
tled) were proposed. The mixed collection is composed of 10000
randomly picked MIDI files. The karaoke collection is composed
of about 1000 .kar files (Karaoke MIDI files) with mostly West-
ern popular music. Tab. 1 presents the results obtained with these
two collections and analyzed using our general polyphonic align-
ment algorithm and a classical alignment proposed by Uitden-
bogerd [13].

Results presented in Tab. 1 clearly show that the algorithm
considering new edit operations improves retrieval systems. Con-
cerning the karaoke collection, the average precision is near 0.80
whereas it is only 0.36 when considering a monophonic alignment.
This difference (although less significant) is also observed for the
mixed collection. The average precision is 0.67 instead of 0.52.

In order to confirm these first promising results, other exper-
imentations have to be performed with a more important number
of pieces and melodies in our collection, in particular with poly-
phonic queries.

In this paper, we proposed a general alignment algorithm for
polyphonic alignment. In particular, this algorithm only require
scoring scheme between notes (and not chords). We also intro-
duced an original approach to compute a score between chords.
Finally, it is important to notice that in practice we can bound the
number of different pitches in a chord by a constant C, typically
between 4 and 6. Similarly to Mongeau Sankoff [1], it is reason-
able to limit the number of different pitches merged to the same
valueC. Another possibility is to limit the number of merged notes
by another constant C′. Under these restrictions, the algorithm
presented remains quadratic in the size of the input sequences.
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