
Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

OVERLAY PROBLEMS FOR MUSIC AND COMBINATORICS 1,2

J. Allali 3, P. Antoniou 4, P. Ferraro 3,5, C. S. Iliopoulos 4,6 and S. Michalakopoulos 4,7

3 Laboratoire Bordelais de Recherche en Informatique, Bordeaux, France

http://www.labri.fr, {julien.allali,pascal.ferraro}@labri.fr
4 Algorithm Design Group, Department of Computer Science, King’s College London, Strand, London WC2R 2LS, England

http://www.dcs.kcl.ac.uk/research/groups/adg/, pavlos.antoniou@kcl.ac.uk,{csi,spiros}@dcs.kcl.ac.uk
5 Pacific Institute For the Mathematical Sciences, University of Calgary, Canada

6 Digital Ecosystems & Business Intelligence Institute and Dept. of Computing, Curtin University, Perth, Australia

1 Research partially supported by Royal Society Joint International grant between 3 and 4, 2007-2009
2 This work has been partially sponsored by the French ANR Brasero (ANR-06-BLAN-0045) and ANR SIMBALS (JC07-188930) projects

7 Supported by the Engineering and Physical Sciences Research Council (EPSRC) under the Doctoral Training Award (DTA)

ABSTRACT
Motivated by the identification of the musical structure of
pop songs, we introduce combinatorial problems involving
overlays (non-overlapping substrings) and the covering of
a text t by them. We present 4 problems and suggest solu-
tions based on string pattern matching techniques. We show
that decision problems of this type can be solved using an
Aho-Corasick keyword automaton. We conjecture that one
general optimization problem of the type, is NP-complete
and introduce a simpler, more pragmatic optimization prob-
lem. We solve the latter using suffix trees and finally, we
suggest other open problems for further investigation.

1. INTRODUCTION

A useful task within the realm of Music Information Re-
trieval is the automatic identification of structural parts in
music pieces. This has been performed manually in some
cases [12], and serves as our motivation for the problems
and algorithms we present in this paper. We focus on pop-
ular western music which tends to have a structure made
up of the following parts: {Intro, Verse, Chorus, Bridge,
Outro}. For example [12], The Beatles song “Strawberry
Fields Forever” has the structure shown in Figure 1.

CI V C V C V C O

Figure 1: “Strawberry Fields Forever” where I ⇒ Intro, V ⇒
V erse, C ⇒ Chorus, B ⇒ Bridge, O ⇒ Outro.

Applications for music split into its structural parts are
many and varied [7]. Accessing specific parts of songs,
for browsing, audio thumbnailing, remixing or selectively
sampling are some possible uses [11]. Skipping “unimpor-
tant” sections or facilitating a query by humming (QBH)
engine [5] are others.

In the latter case, a database of “significant” parts of
songs (verse and chorus) would greatly speed up the search

time. This is because “users” normally use such QBH sys-
tems by humming (or inputting in another way) the more
memorable part of a song i.e., the chorus or the verse [2].
Given that both the verse and the chorus are repeated pat-
terns in the song, storing only these would reduce the stor-
age requirements as well as the search time.

Most proposed algorithms involve signal processing [10,
11] where the music is represented and manipulated in its
audio format. Instead, we follow the Mongeau and Sankoff
model [9] and in true String Algorithms [3, 8] fashion rep-
resent music as a sequence of ordered pairs, with the pitch
of the note as the first item and its duration as the second.

The paper is organized as follows. In Section 2 we de-
fine overlay and other essential concepts. In Section 3 we
introduce the overlay problems. Each problem is presented
and detailed solutions are investigated in the subsections 3.1
to 3.4. Finally we conclude in Section 4 and discuss further
works.

2. PRELIMINARIES

A string is a sequence of zero or more symbols from an al-
phabet Σ. The set of all strings (including the empty string
ε) over the alphabet Σ is denoted by Σ∗. A text t is a
string of length |t|; the ith symbol of t is denoted by ti,
thus t = t1t2 . . . t|t|.

A string w is a substring of t if t = uwv for u, v ∈ Σ∗.
A substring w of t can be represented by the pair (b, e),
where b, e ∈ N+ and b is the start position and e the end
position of w in t i.e., w = tb . . . te, where 1 ≤ b ≤ e ≤ |t|.

A repeat is a non-empty substring of t that occurs at
more than one position. Formally, if u occurs in t at position
i i.e., u = ti...i+|u|−1 then u is a repeat in t if and only if
∃ j 6= i, 1 ≤ j ≤ n such that u = tj...j+|u|−1.

A substring w of t is of power m, denoted wm when
it is repeated consecutively in t, m times. Thus, if w oc-
curs in t at i, and is of power m then w occurs at positions

ICAD09-1

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

i, i + |w|, . . . i+ (m− 1)|w| in t. For example, the empty
string ε is of power 0 in any text t, and substring w of t is of
power 3 if www is a substring of t.

Definition 1 (Subsequence). A subsequence St of t is a set
of pairs {(b1, e1), (b2, e2), . . . , (bm, em)} such that, for all
(bi, ei) in St:

• 1 ≤ bi < ei ≤ |t|

• ∀(bj , ej) ∈ St :

 bi 6= bj if i 6= j,
bj > ei if bj > bi,
ej < bi if bj < bi.

Thus, St defines a set of non-overlapping factors of t. The
length of St is equal to

∑
(bi,ei)∈St

(ei − bi + 1) and is de-
noted as ‖St‖.

Definition 2 (Overlay). The set T = {w1, w2, . . . , wk} of
strings wi over Σ∗, is said to be an overlay of text t if there
exists a subsequence St of t such that:

∀ (bj , ej) ∈ St,∃ wi ∈ T such that tbj . . . tej = wi

In other words, each (bj , ej) ∈ St has a matching wi of
t in T . We say that (bj , ej) is an occurrence of wi in t, and
St is an occurrence of T in t. We define the overlay size of
T as follows:

‖T ‖ = Max{‖St‖ of all occurrences St of T in t} (1)

Definition 3 (Global (Partial) Overlay). Consider a string
t that can be entirely covered by an occurrence of T i.e.,
‖T ‖ = |t|. T is said to be a global overlay of t. Otherwise,
when t cannot be entirely covered by T , it is said to be a
partial overlay.

We call the degree δ of wi the number of its occurrences in
St and denote it by δ(wi).

Example 1. For example, for t = acbcaaccbbca, T =
{w1 = cb, w2 = bca, w3 = ac} is a global overlay of t
(St = {(1, 2), (3, 5), (6, 7), (8, 9), (10, 12)}). The degree
of the substring cb, δ(w1), is 1, while δ(w2) = δ(w3) = 2.
It is clear that w2 and w3 are repeats in t. All the substrings
wi are of power 1 in t.

Note that for t′ = cbca, although it can be said that
w1 and w2 cover t′, we cannot exhibit a subsequence for T
because the two substrings overlap in t′.

3. THE PROBLEMS

There are two kinds of problems:

• Given a set of strings T , and text t, validation that T
is a global overlay of t (VALIDATION PROBLEMS).
These are “decision” problems.

• Inferring an optimal (longest length) partial overlay
of a text under some restrictions (INFERENCE PROB-
LEMS). These are “optimization” problems.

We next present 4 problems, two of each general type. We
note their motivations from music and mathematics, present
solutions and make a couple of conjectures.

3.1. Global Overlay Problem

Problem 1 (Global Overlay). Given text t ∈ Σ∗ of length
n, and a set of strings T = {w1, w2, . . . , wk} over Σ∗, is
there a global overlay of t over T ?

This is a validation problem. Next we present an efficient
solution to this problem and conjecture that it is the fastest
possible.

An outline of the algorithm:

STEP 1
Build the Aho-Corasick (AC) automaton [1], for the set of
strings T = {w1, w2, . . . , wk}.

a a 0
2

1
b

a
3

4

c

b
5

6

7
b

a
8

Figure 2: Aho-Corasick automaton for T = {w1 = aa, w2 =
ab, w3 = aba, w4 = acb, w5 = ba}. Only non-trivial failure
links are shown.

STEP 2
Trace t via the AC automaton, finding which strings wi of
T occur at position j of t, ∀j. Let T ′j = {wi | tj−|wi|..tj}.
STEP 3
Assume that we’ve computed whether there is a valid over-
lay at all positions of t up to j i.e., for substring t1..tj of t.
We will now check whether there is a valid overlay at posi-
tion j + 1. Say T ′j+1 = {wi1 , wi2 , . . . , wi`

} ⊆ T occur at
position j + 1, then we check each wip

, where p ∈ [1..`],
until we find a overlay at position j+1−|wip

| of t or report
that there isn’t one in t1..tj+1.

Example 2. Given the string t = abaababaabaab and the
set of strings T = {w1 = aa,w2 = ab, w3 = aba, w4 =
acb, w5 = ba} we construct the AC automaton shown in
Figure 2. The trace on t of the automaton is shown in Fig-
ure 3, from which we infer that T is a overlay of t.

3.1.1. Complexity Analysis

Step 1 depends on the sum of the lengths of the strings,
which we denote ‖T ‖ i.e., ‖T ‖ = |w1|+ |w2|+ . . .+ |wk|
and the size of the alphabet Σ. For fixed size alphabet it can

ICAD09-2

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

i ti AC node T ′ overlay at i
1 a 1 − −
2 b 3 {w2} w2

3 a 4 {w3, w5} w3

4 a 2 {w1} w2.w1

5 b 3 {w2} w3.w2

6 a 4 {w3, w5} w3.w3, w2.w1.w5

7 b 3 {w2} w3.w2.w2

8 a 4 {w3, w5} 3 solutions, one is: w3.w3.w5

9 a 2 {w1} w3.w2.w2.w1

10 b 3 {w2} 3 solutions
11 a 4 {w3, w5} 4 solutions
12 a 2 {w1} 3 solutions
13 b 3 {w2} 4 solutions

Figure 3: Trace of automaton on string t.

be considered linear on the size of ‖T ‖. Step 2 is linear on
|t|.

The runtime of step 3 depends on the number of oc-
currences of strings wi identified at the terminal nodes of
the automaton i.e., |T ′i |. In the worse case T ′ = T , so k
strings must be checked at each position of t. Assuming
that ‖T ‖ < t, which is generally the case, our algorithm
runs in O(kn).

We believe that there isn’t a faster solution to this prob-
lem and so state the following conjecture, which we leave
as an open problem.

Conjecture 1. Problem 1 cannot be determined any faster
than O(kn).

Our solution answers the question of whether a given
set is a valid overlay. Can we, given the above problem
also infer all the global overlays of t? The last column in
Figure 3 shows an increasing number of possible solutions.
Based on this observation we state and prove the following
lemma:

Lemma 1. The number of global overlays of a text t of
length n, over a set of strings T = {w1, w2, . . . , wk} can
be greater than kn.

Proof. Let T = {a, a2, a3, . . . , ak}, and t = an. All k
strings occur at position i. This implies k combinations at
each position leading to kn possible covers.

3.2. Partial Overlay with Minimum Degree d Problem

Problem 2 (Partial Overlay with Minimum Degree d). Given
text t ∈ Σ∗, find the set T = {w1, w2, . . . , wk} of strings
over Σ∗, where the degree of eachwi is at least d, δ(wi) ≥ d,
which ‘best’ covers the string t i.e., with the largest overlay
size.

This is an inference problem. For d = 1, T = {w1} = t,
trivially. For d = 2, an outline of an algorithm:

STEP 1
Find all repeated strings in t, done in linear time using a
suffix tree [6, 13], for example.

STEP 2
Form combinations of these repeated strings and try to cover
as much as possible of t without the strings overlapping.

For example, it may be possible to cover the whole of t
with just one string. Consider the text t = abcdabcd which
has a global overlay T = {w = abcd}. Or alternatively, we
may need all of the repeated strings in t. This time consider
text t = abcddcba which has a global overlay T = {w1 =
a,w2 = b, w3 = c, w4 = d}.

Conjecture 2. The partial overlay with minimum degree d
problem is NP-complete.

This can be proven as future works, possibly by reduc-
ing 3-SAT to Problem 2, as was done for a similar problem
in [4]. In this paper we solve a simpler inference problem
with an application in Music Information Retrieval in Sec-
tion 3.4. But first we solve a verification problem in the next
section, which also has real world applications.

3.3. Global Overlay with Powers Problem

Problem 3 (Global Overlay with Powers). Given text t ∈
Σ∗ of length n, and a set of strings T = {w1, w2, . . . , wk}
over Σ∗, is there a global overlay of t over T such that
every string wi involved in the overlay is a power of at least
m i.e., t = wk1

i1
wk2

i2
. . . wk`

i`
, where ki ≥ m.

This verification problem is motivated by the fact that often,
the strings that represent pop songs can be broken down into
substrings that repeat consecutively. This problem is also
interesting from a combinatorial point of view. The solution
we present is similar to that of Problem 1.

An outline of the algorithm:

STEP 1
Build the Aho-Corasick (AC) automaton for the set of strings
and their powers T (m) = {wm

1 , w1, w
m
2 , w2 . . . , w

m
k , wk}.

STEP 2
Trace t via the AC automaton, finding which strings wq

i of
T (m) occur at position j of t, ∀j, where q ∈ {m, 1}. Let
T ′(m)

j = {wq
i | tj−|wq

i |..tj}.

STEP 3
Assume that we’ve computed whether there is a valid over-
lay at all positions of t up to j i.e., for substring t1..tj of t.
We will now check whether there is a valid overlay at posi-
tion j + 1. Say T ′(m)

j+1 = {wq1
i1
, wq2

i2
, . . . , wq`

i`
} ⊆ T occur at

position j + 1, then we check each wqp

ip
, where p ∈ [1..`],

until we find a overlay at position j + 1 − |wqp

ip
| of t, only

this time, if wqp

ip
is not a power of m but a single occurrence

i.e., qp = 1 then it is only valid if there is an occurrence at
j+1−|wqp

ip
| which is a power. In other words, if at position

j+1, T ′(m)
j+1 contains both “single” strings and powers, keep

a power. If there are only single strings then the sequence is
valid up to j only if there is a power up to j − wi.

ICAD09-3

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

The runtime is the same as for Problem 1 i.e., O(kn)
even though the hidden constant is larger due to the extra
checks for single occurrences or powers.

3.4. 2 String Partial Overlay with Minimum Degree 2
Problem

Next we describe the final problem of this paper which is
motivated by the fact that pop songs are often composed of
verse and chorus, which repeat at least once each and form
the main body of the musical piece, see [12]. Note that if
we identify two repeated substrings in musical text t which
cover most of t, then with the help of [7] we can infer that
the remaining sections are intro, outro, and bridge and solo
or other meaningful labels, Figure 4.

w1 w2 w2w1 w2 w1

gap 1 gap 2 gap 3 gap 4

w1

Figure 4: By identifying verse and chorus (w1 and w2), the other
bits (intro, outro, bridge, solo) may be inferred.

Problem 4 (2 String Partial Overlay with Minimum De-
gree 2). Given a text t find the optimal partial overlay for 2
strings with each having degree at least 2, and the condition
that each occurrence of the strings is present in the overlay.
Formally, find T = {w1, w2} with largest ‖T ‖ such that
δ(w1) ≥ 2 and δ(w2) ≥ 2 and all occurrences of w1 and
w2 in t are involved in the overlay.

This is an inference problem. The first observation is that
for δ(w1) and δ(w2) to be at least 2, the only substrings we
need consider are the repeats of t.

An outline of the algorithm:

STEP 1
Find all repeated substrings of t. We can do this using a
suffix tree.

STEP 2
Form pairs of substrings and if they give a valid partial over-
lay i.e., they don’t overlap in any of their occurrences in t,
report the length of the subsequence ‖St‖.
STEP 3
Find the best of the valid partial overlays by Equation 1.

Next we define our suffix tree and then present the details
of the outlined algorithm.

3.4.1. Further Definitions

We call ST (t) the suffix tree of t of length n. The tree nodes
are labeled v0, v1, . . . with v0 the root node. For each node
vi of ST (t), Fvi denotes the word spelt from the root to vi

i.e., it’s path label.
A suffix link s(v) of node v in tree ST (t) is a directed

edge from internal node v to internal node u such that if the
path label Fv of v is xβ where x a symbol in Σ and β a

string (possibly empty) in Σ∗ then the path label Fu of u, is
equal to β.

3.4.2. Finding the Overlay

Every repeated substring of t is encoded in the tree at the
internal nodes. They are the path labels of the nodes and the
prefixes of the path labels.

To find the optimal overlay, we can simply compare
each pair of repeated substrings and see if they overlap and
if they don’t then calculate the overlay as outlined in step 2
and finally, report the optimal cover in step 3.

We observe however that many of the pairs overlap and
that this information is also encoded in suffix tree ST (t).
We apply two rules:

1. If u is an ancestor of v, then u’s path label is a prefix
of v’s path label, and u and v overlap. (ANCESTOR
RULE)

2. If u is the suffix link node of v, then u’s path label is a
suffix of v’s path label, and thus they overlap. Further,
all of u’s ancestors are also suffixes of u. (SUFFIX
RULE)

Let L(t) be the set of pairs of repeated substrings in t
we need compare i.e., L(t) = {(u, v)} such that (u, v) are
pairs of nodes in ST (t) with path labels and prefixes of path
labels that don’t break the Ancestor Rule or the Suffix Rule.
Further, let P (u) be the list of ancestors of node u in ST (t).
We build L(t) in Algorithm 1. The running time depends on
the number of suffix links that each node needs to traverse.
Given an extreme case such as string (ab)n would require
O(n) iterations of the while loop, giving a total runtime of
O(nm), where m the number of internal nodes in ST (t).

Algorithm 1 Find Valid Overlay Pairs
1: function FINDOVERLAYPAIRS(ST (t))
2: L = ∅
3: for each u ∈ ST (t) do
4: list Lu = {all path labels and node prefixes in ST (t)}
5: while u 6= root do
6: remove self from Lu . remove u
7: remove ancestors from Lu . remove P (u)
8: set u to suffix link node . u← s(u)

. add u’s valid pairs to L
9: L ← L ∪ {(u, v) | v ∈ Lu}

10: return L

By increasing the space complexity we can reduce the
running time. At each node vi we store data as shown in
Figure 5. There are three binary lists. The ancestor list
P (vi), represents the nodes with which vi breaks the ances-
tor rule. A 1 at position j of vi’s list signifies that vj is an
ancestor of vi. The binary list is simply constructed by the
application of a logical OR (| |) thus:

P (vi) = vi | | P (p(vi))

ICAD09-4

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

where vi is a binary list that represents the node itself
(e.g. node v2 = 01000...) and p(vi) is the nodes parent.

It may be obvious at this point that the order in which the
nodes are processed is important for this operation to give
us the expected result i.e., for vi’s ancestor list to exclude
(include) all ancestors of vi. For the nodes to be processed
in the correct order, we store them in a sorted balanced bi-
nary tree B(t). The nodes are sorted by their depth in the
suffix tree ST (t) so that any node vi that is an ancestor or a
suffix link of a node vj is before vi in B(t).

The suffix link list S(vi), represents the nodes with which
vi breaks the suffix rule:

S(vi) = P (s(vi)) | | S(s(vi))

where s(vi) is vi’s suffix link. Note that neither the an-
cestor list nor the suffix list is symmetric.

The overlay list C(vi), represents the pairs of nodes
that must be compared. Thus, it’s symmetric because pair
(vi, vj) is equal to pair (vj , vi) in this case. The overlay list
is calculated:

C(vi) = P (vi) | | S(vi) | | P−1(vi) | | S−1(vi)

where P−1(vi) is a binary list such that:

P−1(vi)[j] = P−1(vj)[i], ∀ (vi, vj).

Similarly S−1(vi) is a binary list such that:

S(vi)[j] = S(vj)[i], ∀ (vi, vj).

We use Algorithm 2 to build the binary list Cvi
for node

vi. Each logical OR can be performed in constant time and
so the algorithm takes O(m) time, where m the number of
internal nodes in ST (t).

Algorithm 2 Find Valid Overlay Pairs Fast
1: function FINDOVERLAYPAIRSFAST(ST (t))
2: vi ← first node in B(t)
3: while vi not null do
4: P (vi)← vi | | P (p(vi))
5: vi ← next node in B(t)

6: vi ← first node in B(t)
7: while vi not null do
8: S(vi)← P (s(vi)) | | S(s(vi))
9: vi ← next node in B(t)

10: vi ← first node in B(t)
11: while vi not null do
12: C(vi) = P (vi) | | S(vi) | | P−1(vi) | | S−1(vi)
13: vi ← next node in B(t)

14: return C(vi)

vi

ancestor list P (vi) = 0100110 . . .
suffix link list S(vi) = 1001010 . . .
overlay list C(vi) = 0100101 . . .

Figure 5: Node data

4. CONCLUSION AND FURTHER WORKS

Proving the conjectures we’ve made in this paper are our
immediate targets and though it may not be interesting from
a musical point of view, it is from a purely Mathematical
and Computer Science point of view.

Further works include implementing the suffix tree solu-
tion to Problem 4 and testing it on real data. We believe we
can achieve good percentages of identifying the full struc-
ture of pop songs i.e., verse, chorus, bridge, intro, and outro.
We intend to consider the same problem but by allowing in-
exact repeats as well. The test results would be expected
to be even better for such an algorithm and implementation
given that it is common that two verses in the same song
would have slight differences between them.

The solution to Problem 4 could also be improved by re-
ducing the number of strings that need pairing even further
and proving a (possibly linear) upper bound on the number
of pairs. Lifting some of the restrictions is an additional im-
provement that can be made, in particular the one that all
occurrences must be involved in the overlay.

We’ve presented 4 overlay related problems. These prob-
lems attempt to identify the non-overlapping occurrences
of substrings of a given text t. The problems are split into
optimization (inference problems) and decision (validation
problems) and we suggest solutions for each one from the
domain of string pattern matching.

We solve the decision problems by using Aho-Corasick
keyword searching techniques. We conjecture that a valida-
tion problem is NP-complete and solve a simpler version of
it in polynomial time by using a suffix tree and manipulation
of binary arrays. This latter problem has direct applications
in the real world since we make the case that it can be used
for identifying the structure of popular western music.

5. REFERENCES

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string
matching: an aid to bibliographic search. Commun. ACM,
18(6):333–340, 1975.

[2] Vaino Ala-Harkonen, Johan Brunberg, Kjell Lemstrom, and
Niko Mikkila. Jmir serves mozart. In Proceedings of the
2008 Computers in Music Modeling and Retrieval Confer-
ence (CMMR 2008), Copenhagen, Denmark, pages 148–157,
May 2008.

[3] J. Allali, P. Ferraro, P. Hanna, and C. S. Iliopoulos. Lo-
cal transpositions in alignment of polyphonic musical se-
quences. In 14th String Processing and Information Re-
trieval Symposium, Santiago, Chile, 2007.

[4] R. Cole, C. S. Iliopoulos, M. Mohamed, W. F. Smyth, and
L. Yang. Computing the minimum k-cover of a string.
In M. Simanek, editor, Proceedings of the 2003 Prague
Stringology Conference (PSC’03), pages 51–64, 2003.

[5] Asif Ghias, Jonathan Logan, David Chamberlin, and
Brian C. Smith. Query by humming: musical information
retrieval in an audio database. In ACM Multimedia, pages
231–236, 1995.

ICAD09-5

Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

[6] Dan Gusfield. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[7] Paulus J. and Klapuri A. Labelling the structural parts of
a music piece with markov models. In Proceedings of the
2008 Computers in Music Modeling and Retrieval Confer-
ence (CMMR 2008), Copenhagen, Denmark, pages 137–147,
May 2008.

[8] K. Lemstrom. String matching techniques for music re-
trieval. PhD Thesis, University of Helsinki, Department of
Computer Science, 2000.

[9] M. Mongeau and D. Sankoff. Comparison of musical se-
quences. Computers and the Humanities, 24:161–175, 1990.

[10] B. S. Ong. Structural Analysis and Segmentation of Musical
Signals. PhD thesis, Universitat Pompeu Fabra, Barcelona,
Spain, 2006.

[11] Geoffroy Peeters. Deriving musical structures from sig-
nal analysis for music audio summary generation: sequence
and state approach. Lecture Notes in Computer Science,
2771/2004:169–185, February 2004.

[12] A. W. Pollack. ‘notes on...’ series. the official rec.music
beatles home page. http://www.recmusicbeatles.com. 1989-
2001.

[13] Esko Ukkonen. On-line construction of suffix trees. Algo-
rithmica, pages 249–260, 1995.

ICAD09-6

