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ABSTRACT

This paper introduces kernel regression mapping soni�ca-
tion (KRMS) for optimized mappings between data features
and the parameter space of Parameter Mapping Soni�ca-
tion. Kernel regression allows to map data spaces to high-
dimensional parameter spaces such that speci�c locations
in data space with pre-determined extent are represented by
selected acoustic parameter vectors. Thereby, speci�cally
chosen correlated settings of parameters may be selected
to create perceptual �ngerprints, such as a particular tim-
bre or vowel. With KRMS, the perceptual �ngerprints be-
come clearly audible and separable. Furthermore, kernel
regression de�nes meaningful interpolations for any point
in between. We present and discuss the basic approach ex-
empli�ed by our previously introduced vocal EEG soni�ca-
tion, report new soni�cations and generalize the approach
towards automatic parameter mapping generators using un-
supervised learning approaches.

1. INTRODUCTION

Multivariate time series is a frequent data type in many sci-
enti�c contexts, and particularly in biomedical applications,
such as EEG, EMG, ECG, fMRT, to name a few. The high-
dimensionality poses a particular challenge to understand
the structure of the state space, and furthermore the dynam-
ical aspects which manifest themselves in the time domain
in the form of rhythm, rhythmic changes, phases between
channels and their systematic change. The traditional way
(still regularly used in clinical practice) of exploring such
features of alike data is by plotting the parallel time series as
shown in Fig. 1. This allows direct comparison of features
and their changes in the individual time series. However,
it remains dif�cult to interpret systematic dependencies be-
tween different channels from the plots, e.g. do the phase
relations between the channels change over time or do they
stay constant? We are particularly interested in a meaning-
ful auditory representation of the human electroencephalo-
gram (EEG). As a novel approach to achieve this, we intro-

Figure 1: Typical plot for reviewing high-dimensional time-
series data. Shown are 19 channels of a standard EEG dur-
ing an absence seizure.

duced the technique of Vocal EEG Soni�cation [1] to ren-
der soni�cations so that characteristic spatio-temporal pat-
terns (or motif sequences) in the data lead to corresponding
patterns of vowel-transitions. From these soni�cations we
obtained structured auditory gestalts as emergent features.
The gestalts might be coined acoustic �ngerprints or signa-
tures. Acoustic �ngerprints would be of clinical interest if
they could be shown to correspond to known and discernible
pathologies in the data. Such a spontaneous emergence of
auditory gestalts is a signi�cant advantage of our technique
over other types of parameter-mapping soni�cations and it
connects well with the capability of the human auditory sys-
tem to constitute perceptible gestalts and recognize them if
they occur repeatedly.

The selection of vowel-like sounds and � as a conse-
quence of time-depentent data � vowel transitions, was mo-
tivated by the fact that human listeners are already highly
adapted to the segmentation and interpretation of similarly
structured patterns from processing speech signals. Fur-
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thermore, since we all are able to generate speech sounds
with our own articulatory system, we can communicate pat-
terns by imitating them vocally � which is an ideal condition
for collaboratory examination of EEG data, because one re-
searcher can directly draw a collegue’s attention to a pattern
by imitating it.

In our original implementation of Vocal EEG Soni�ca-
tion [1], we paid special attention to achieve generality in
the sense that soni�cations could be rendered even with dif-
ferent recording conditions like a different number or posi-
tion of channels, or a different sampling rate. We computed
the dipole q = ( qx ; qy ) of electric activity on the scalp and
mapped the x=y-components of the dipole vector, corre-
sponding to hemispheric and anterior-posterior disbalance,
to the �rst two formant frequencies of a subtractive synthe-
sizer. Since vowels are mainly characterized by their �rst
two formants as shown in Fig. 2, this produced transitions
between vowel sounds.

Figure 2: Plot showing vowel sounds in the space of the
�rst two formants. The plot is reproduced from our previous
paper [1].

However, the perceptual quality of the synthetic vow-
els was limited. In natural speech signals the coordinated
movement of several formants, including their center fre-
quencies, their bandwidths and their gain play together to
shape the timbre, and thus the parameters governing those
characteristics show complex dependencies. We experi-
mented with mappings from various data features to more
than two formants but with limited or no improvement of the
saliency. This motivated us to rethink the mapping mecha-
nism in search for a mapping that could create clearly dis-
tinguishable sounds of controllable articulation accuracy.

In this paper we present a kernel-regression based ap-
proach to mediate between high-dimensional data spaces
and high-dimensional parameter spaces for soni�cation so
that speci�c acoustic constellations are reached at con-

trollable conditions, and additionally a controllable in-
terpolation is achieved in data space. We describe the
technique and exemplify the approach with the vowel-
creating soni�cation described above. As a generalization
of this approach, we then present a scheme to combine
kernel-regression based mapping with unsupervised learn-
ing techniques such as vector quantization to achieve semi-
automatic data-driven mediators for soni�cation.

2. KERNEL REGRESSION MAPPING

In Parameter-Mapping Soni�cation, the most frequent form
is the one-to-one mapping of data variables to acoustic pa-
rameters, such as for example mapping channel i th data
x i (t) to pitch p(t). Different mapping functions such as lin-
ear, exponential, sigmoid, etc. have been used for this basic
case.

A more general way to compute acoustic parameters
~p is to allow mixtures of several data features ~x, e.g.
p1 = � (

P
i ai x i ) with mixing coef�cients ai and a map-

ping function � (�), or in matrix form:

~p = ~� (A ~x + ~b) (1)

This linear mixing followed by optional nonlinear mapping,
however, does not support an association of different param-
eter vectors ~p� to speci�c locations in data space ~x� , our
main goal as described in Sec. 1.

Kernel regression is a standard approach to compute
smooth interpolations between given output vectors [2], and
we here show how it can be used to create a new family of
kernel-based soni�cation mapping techniques. Without loss
of generality, we focus on one-dimensional outputs � high-
dimensional outputs are then obtained by using parallel ker-
nel regression units for each vector component.

Kernel regression computes an output value p for an in-
put x by averaging the outputs of given prototypes p� , lo-
cated at inputs ~x� according to the strength of their respon-
sibility to contribute to the value at postition ~x, which is
quanti�ed by a kernel function K (~x; ~x� ). Using linear ker-
nel functions deliver the above mappings as a special case.
A typical choice for interpolation are Gaussian kernels

K � (~x; ~x� ) =
1

(2�� 2)d=2
exp

�
�

k~x � ~x� k2

2� 2

�
(2)

where the bandwidth parameter � controls the region of in-
�uence of a given prototype.

The interpolation result is obtained by

p(~x) =

P

�
K � (~x; ~x� ) � p�

P

�
K � (~x; ~x� )

(3)
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At very large values of � the output becomes approximately
the mean of all p� for all inputs. The smaller � , the bet-
ter separated are the outputs. At position ~x� , the output
p� dominates increasingly with decreasing � . Thereby we
gain a smooth interpolation of outputs for inputs between
the prototypes.

A one-dimensional example is depicted in Fig. 3, to help
to understand the basic operation of kernel regression. The
calculated parameter value is a smooth function for large
values of � and approaches a discrete set of points as � !
0. For high-dimensional outputs, as in case of mappings

Figure 3: Illustration of kernel regression using a Gaussian
kernel of bandwidth 0.1 (blue), 0.3 (green), 0.5 (red) and 1
(cyan). Prototypes are marked as blue circles. Note that the
maximal �t of output values does not necessarily coincide
with the prototype x-value.

on parameter vectors, each output vector component is the
result of a kernel regression. Thus a trajectory in data space
passing from one prototype position ~x� to another prototype
~x� will lead to a trajectory in parameter space that moves
slowly near ~p� and near ~p� but much faster in between, if �
is much smaller than the prototype distance k~x� � ~x� k (see
Fig. 4). In the limiting case � ! 0 we obtain a segmentation
of the input space into so-called Voronoi cells of constant
output vectors corresponding to the output of the nearest
prototype (winner-takes all).

With this background we can now formulate Kernel Re-
gression Mapping Soni�cation (KRMS) as a general pro-
cess as shown in Fig. 4: in the �rst step some adequate fea-
tures are computed from the data vectors. These may range
from a simple selection of variables to non-local aggregate
functions such as an estimation of activity in a certain fre-
quency band. Kernel regression is then used as described
above to render appropriate parameter vectors which are
subsequently fed into the sound synthesis engine. This soni-
�cation scheme can be used for different types of mappings
such as discrete or continuous parameter mapping soni�ca-
tions and even event-based soni�cation.

The bandwidth parameter of the kernel regression is
an intuitive control parameter to adjust the conciseness of

Figure 4: Illustration of the full kernel regression map-
ping soni�cation chain, which mediates between potentially
high-dimensional features and parameter spaces. For mul-
tivariate time series a feature state trajectory is transformed
into a continuous parameter trajectory as illustrated here for
two kernel centers.

the mapping � from very smooth interpolation mappings at
large � levels to sharp transitions between prototype param-
eter vectors at low values of � . Since the whole soni�cation
chain can be processed in real-time, this parameter can also
be adjusted interactively.

In the following section we exemplify KRMS in a spe-
ci�c biomedical application, namely the soni�cation of
EEG data.

3. A VOCAL EEG SONIFICATION WITH KRMS

As explained in the Introduction, Vocal EEG Soni�cation
aims at the emergence of temporally structured dynamic
gestalts (or �ngerprints) that characterize pathologic dy-
namics in the measured brain activity. The data are d-
dimensional vectors (with d commonly between 19 and 40)
obtained from electric potential measurements at distinct lo-
cations on the scalp, measured against some reference at
a rate of 200 Hz or higher. The measurements can be in-
terpreted as a trajectory moving in the d-dimensional state
space. In our original approach, we used the hemispheric
and anterior-posterior disbalance as generic data features for
the mapping to vocal sounds.

In the paper we focus on a mapping of data features to
acoustic parameters that are responsible for the perception
of vowels: formant frequencies; formant bandwidths; and
gains of a sum of �lter outputs on an excitatory source sig-
nal. Details of the improved mapping data features to other
parameters for the recognition of pathologic EEG features
will be reported elsewhere.
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3.1. The original data features

Fig. 5 shows the SuperCollider code for our vowel synthe-
sizer. A transition between unvoiced and voiced speech is
achieved by controling vn, an additional vibrato in the fun-
damental f 0 is controlled by rate vfreq and intensity vmod.
Other arguments are self-explanatory, f i ; bwi ; gi refer to
formant frequency, bandwidth and gain of the i -th formant.

SynthDef("CV2", { | out=0, f0=135, level=0, vn=1,
vfreq=0, vmod=0.2, pan=0,
f1=650, bw1=80, g1=(0),
f2=1080, bw2=90, g2=(-6),
f3=2650, bw3=120, g3=(-7),
f4=2900, bw4=130, g4=(-8),
f5=3250, bw5=140, g5=(-22),
filtcf=1000, lg=0.05 |

var ffreq, sum, av0, an0, ain;
ffreq = SinOsc.ar(vfreq, 0, mul: vmod, add: f0);
an0 = LPF.ar( WhiteNoise.ar(4), 18000);
an0 = BPF.ar( an0, f1, (bw1/f1+0.1), g1.dbamp)

+ BPF.ar( an0, f2, (bw2/f2+0.1), g2.dbamp)
+ BPF.ar( an0, f3, (bw3/f3+0.1), g3.dbamp)
+ BPF.ar( an0, f4, (bw4/f4+0.1), g4.dbamp)
+ BPF.ar( an0, f5, (bw5/f5+0.1), g5.dbamp);

av0 = Formant.ar( ffreq, ffreq, 100, 0.5)
+ Formant.ar( ffreq, f1, bw1, g1.dbamp)
+ Formant.ar( ffreq, f2, bw2, g2.dbamp)
+ Formant.ar( ffreq, f3, bw3, g3.dbamp)
+ Formant.ar( ffreq, f4, bw4, g4.dbamp)
+ Formant.ar( ffreq, f5, bw5, g5.dbamp);

ain = (vn.lag(lg)*av0)+((1-vn.lag(lg))*an0);
sum = LPF.ar(ain, filtcf);
Out.ar(out, Pan2.ar(sum, pan, level.dbamp))

}).load(s);

Figure 5: SuperCollider code for the vocal synthesizer used
in the soni�cations. For better readability the �.lag(lg)� suf-
�x is removed in all BPF.ar and Formant.ar control argu-
ments.

The perceived timbre (vowel sound) is at �xed funda-
mental frequency and voice-noise ratio mainly dependent
upon the 3� 5 parameters for the 5 formants. In fact, the
�rst two formant frequencies f 1; f 2 suf�ce to create percep-
tible vowels. If we map data to these two formants, the
question arises which data channels to choose. If we map
data channels to all 15 parameters we �nd a huge number
of possibilities for the mapping with mostly poor perfor-
mance in the sense that they do not create clearly audible
shapes. Thus, the question of mapping is a non-trivial task.
For that reason we suggested in [1] to �rst compute mean-
ingful features from the raw data that can then be mapped to
formant parameters. As mentioned before we used the x/y-
components of the electric dipole since they can be de�ned
for arbitrary electrode montages.

Sound Example S11 gives an impression of vowel tran-
1sound examples are provided at http://sonification.de/

publications/HermannBaierStephaniRitter2008-KRM

sitions obtained. There are recognizable but vaguely dif-
ferentiated vowels as in ’pot’ or ’bar’, and the epileptic ac-
tivity leads to a periodic rhythm similar to ’how-yaaa how-
yaaa how-yaaa’. Quite often the ’shwa’ sound2 is produced.
This is plausible due to the normalization of channel data
to mean 0 and variance 1 which leads to an average dipole
of 0. Fig. 2 shows a typical trajectory in the 2d-parameter
space of the �rst two formants where the center of mass lies
in the middle of the vowel triangle e-o-a. Obviously in the
shown data the richer part of the formant space with ’i’ as in
bee and ’u’ as in zoo is not covered, so these vowels do not
contribute to differentiate dynamic transitions in the data.

We experimented with mapping higher moments (mul-
tipoles) to higher formants without achieving an improve-
ment of the acoustic quality or increased insight from the
soni�cation. Now we aim at better principled, and clearer
audible usage of the formant parameters, thereby diminish-
ing the arbitrariness of such mappings.

3.2. Delay Embedding Features

To solve the mapping problem, we searched for a data fea-
ture that avoids the contraction to the ’shwa’ location and
suggest a two-dimensional delay embedding of the average
potential, as explained below.

Absence seizures and related generalized epileptic ac-
tivity display EEG patterns where correlated activity is
picked up at distributed locations of the scalp. This leads
to the generally observed global increase in correlation dur-
ing such events [3]. The sum of all channels s(t) therefore
averages out random activity to some extent and pronounces
the collective part of the activity. As such it is a well-suited
feature for the purpose of mapping to formants. In case of
typical absence dynamics, with a main frequency at about 3
cps, the corresponding structure is well captured in a scat-
ter plot of s(t) against its time-delayed version s(t � � ). A
good choice for the delay � is a 1/4-fraction of the shortest
wave that is to be resolved � in case of a spike-wave com-
plex at 3 Hz, where the shorter wave, so-called spike, lasts
approximately 1/3 of the complete period we thus get

� =
1

3 Hz
�

1
3

�
1
4

=
1
36

secs (4)

as a suitable choice. Fig. 6 (right side) shows the result-
ing scatter plot for epileptic activity. The rhythmic pat-
tern leads to recurrent structures along narrow paths in the
plot which is more obvious from the delay embedding than
from the dipole components in Fig. 6 (left side). The delay-
embedding proved informative for a variety of epileptic data
sets and we adopted it as 2d-feature for subsequent mapping
on vowels.

2neutral middle vowel, occurs in unstressed syllables
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Figure 6: Data features for Formant Mapping: the left plot
shows the previously used dipole vector, the right plot the
new delay embedding feature - a clear recurrence structure
can be recognized.

Sound example S2 (see [4]) is a soni�cation where the
embedding feature is directly mapped to the �rst two for-
mants of the vowel synthesis as described in [1].

3.3. KRMS for Vocal EEG Soni�caton

Although the above motivated two-dimensional delay em-
bedding feature offers a better occupation of the feature
space than the dipole, it is still not ideal to directly map
it on the �rst two formants. On the one hand, still most of
the activity leads to transitions in the vowel triangle a-e-o
so that the bright individual vowels ’i’ and ’u’ are rarely
touched. On the other hand, as before it neglects the other
15 � 2 = 13 parameters that are apparently very useful for
the perception of concise and clear vowels.

Therefore, we now use KRM to mediate between
the low-dimensional (2d) data feature space and the 15-
dimensional formant parameter space. In such a situation
KRMS can play out its strength, since it allows a pre-
de�ned placement of prototypes in the feature space, and
it furthermore delivers a continuous mapping into the 15-
dimensional formant parameter space so that all vowels are
produced in their cleanest form.

We layed out �ve vowel prototypes (a-e-i-o-u)3 in form
of their corresponding 15 parameters on a pentagon into the
delay-embedding feature-space as shown in Fig. 7. A tra-
jectory that passes nearby these prototypes (and therefore
induce the corresponding parameter sets) will thereby lead
to perceptible transitions between the pure vowels.

The following sound examples S3.1�S3.5 (examples
at [4])illustrate KRMS in this application by means of a se-
ries of soni�cations with different bandwidth parameters,
all using the same EEG dataset. In the series from S3.1 to
S3.5 it can be heard that the transitions between formants
become successively sharper with decreasing bandwidth � .

3like in car-edge-ear-for-zoo

Figure 7: Vowel embedding for Vocal EEG soni�cation
KRMS mapping. The trajectory shows the data for the ren-
dered sonication examples S3.1-S3.5.

The soni�cations were rendered at a compression of 0.5, i.e.
half of real-time rate. This rate is ideal to differentiate vo-
cal rhythms. However, for the sake of getting used to the
sound we also provide examples at a compression rate of
0.25 which allow more time to attend to the vowel changes.
The sounds S4/S5.1�S5.5 correspond to sounds S2/S3.1�
S3.5.

Figure 8 shows the resulting movements in formant
space visually for different values of � . The �ve center fre-
quencies of the formants are shown as a function of time
(bandwidths and gains are interpolated accordingly). For
clarity, only a few oscillations are shown for each bandwidth
value.

As a result, the KRM is an ef�cient means to obtain bet-
ter perceptible and more concice vowels for a given EEG
feature than a direct mapping on formants. In the applica-
tion shown, the prototypes have been manually placed to
obtain the soni�cation. In the following we suggest unsu-
pervised learning techniques to automatically render con-
cice soni�cations for arbitrary high-dimensional data sets.

4. FINDING SUITABLE PROTOTYPE LOCATIONS

We have used KRM as a technique to anchor speci�c map-
pings locally to input space (resp. feature space) with the
additional ability to automatically create useful interpola-
tions between given prototypes. We have shown in the pre-
vious section how this feature can be used to create salient
transitions between vowels.

But how can KRM be useful in the general case of
an high-dimensional data space without any clear motiva-
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Figure 8: Formant frequencies resulting from KRMS of
some few epileptiform signal periods (shown also in Fig. 6).
The time axis show sample number recorded at 256 Hz,
y axis shows frequency in Hz. From left to right: � =
0:05; 0:15; 0:25; 0:35; 0:50

tion where and how to place the prototypes? In this case
it makes sense to consider data-driven techniques to auto-
matically render a limited set of prototypes that character-
ize the distribution in input space. The branch of unsuper-
vised learning (as part of machine learning and neural net-
works) offers manifold techniques to create such represen-
tations [5, 6]. The most straightforward methods are vector
quantization (VQ) where a set of prototypes is adapted to
minimize the quantization error when representing the data
by their nearest vector, or the self-organizing map (SOM)
[7] which does approximately the same and additionally de-
livers a topologically ordered set of prototypes (e.g. on a
grid).

Fig. 9 shows a scatter plot for the EEG features together
with some prototypes that resulted from VQ-learning pro-
totypes with all available state vectors. Obviously, a tra-
jectory will now pass through the Voronoi cells of several
prototypes and thereby create a speci�c sequence of sounds
during a cycle. If the overall pattern in the data changes,
the sequence of sounds changes automatically and allows
thereby the recognition of dynamic characteristics.

By using the bandwidth parameter � , the user has the
control to navigate continuously between a more symbolic
soni�cation where the time series is automatically decom-
posed in the corresponding sequence of prototype sound
patterns (e.g. distinct vowels, or different pitches, if a cer-
tain pitch would be associated with a prototype) to an analo-
gous representation. This offers a convenient way to explore
the analogic-symbolic continuum discussed by Kramer [8],
where changes in the time series correlate to corresponding
changes in the audible form. In result, patterns in the time
series translate to corresponding sequenced patterns in the
soni�cation, with the potential to facilitate the learning and
remembering of patterns, or to discover new patterns.

Figure 9: Vector-Quantization on delay-embedding features
to adapt 10 prototypes automatically. The trajectory is seg-
mented in a sequence of distinct auditory symbols that form
a repeating rhythm. VQ prototypes are shown as circles.

5. DISCUSSION AND CONCLUSION

We introduced Kernel Regression Mapping Soni�cation
(KRMS) as a new method to connect data spaces to possibly
complex parameter spaces for Parameter Mapping Soni�ca-
tion. The connection is achieved via a feature representa-
tion and kernel regression-based interpolation scheme that
is new in the context of soni�cation. Different from exist-
ing mapping schemes, KRMS represents a local method in
the sense that localized points in input space are connected
with a speci�c output. In result, mappings can be obtained
that are not possible with the typical linear mixing mappings
that dominate in the �eld.

KRMS exploits the bandwidth � as an intuitive control
parameter that allows to select the granularity of acoustic
presentation on a scale from a segmentation into a discrete
set of sounds to a continuous interpolation between proto-
type mappings. Thereby the user can set a focus on either
highly accurate rhythmic details (on the symbolic side) or
on a continuously variable sound shape (on the analogical
side) or anywhere in between in Kramers continuum.

KRMS was motivated by our interest in canonic map-
pings between EEG data and vowel transitions so that the
multiple parameters of vowels (5 formants, 5 bandwidth and
5 gains) are altogether coherently adjusted with the time-
varying data. The soni�cation examples demonstrate the
obvious (or: audible) superiority to render concice vowel
transitions. We have not commented on the other audible
changes in the Vocal EEG soni�cation examples such as
panning, pitch changes, voice/noise ratio, and the audible
gaps that have been intentionally and fully data-driven in-
troduced to lead to the perception of consonants. These will
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be addressed in a separate contribution.
KRMS is real-time capable and �exible in all relevant

dimensions: mapping outputs, prototypes, and bandwidth
can all be manipulated on-line if necessary, the computa-
tional effort is modest.

Other applications of soni�cation will likely bene�t
from the KRMS approach For instance, the results of clus-
tering algorithms can be reviewed by setting cluster centers
as prototypes for KRMS and choosing a set of output pa-
rameter vectors of very different timbre. In result, KRMS
will lead to soni�cations where the spreading of data around
the cluster centers can be judged from the deviations of the
prototype sound. In this case the feature computation is
not utilized, and both data and parameter space are high-
dimensional. Alternatively, think of a warning system for
process monitoring (e.g. of sensor measurements for a chip
production line). We can easily set prototypes for positive
and negative states into feature space and thereby quickly
obtain a soni�cation that smoothly and automatically inter-
polates towards the sound parameters associated to the ’neg-
ative’ conditions whenever such states occur. This is a be-
haviour that would not be easy to obtain in direct parameter
mapping.

Abstracting from the speci�c application of Vocal
EEG soni�cation focused here, we see KRMS as a novel
paradigm for segmenting multivariate time series into se-
quences. Together with the available powerful techniques
from machine learning / unsupervised learning we expect a
variety of innovations in domains like process monitoring
(e.g. [9]) and biofeedback systems (e.g. [10]).

In conclusion, Kernel Regression Mapping Soni�cation
(KRMS) opens new avenues how to mediate between high-
dimensional data spaces and often equally high-dimensional
parameter spaces for parameter mapping soni�cation, par-
ticularly in those situations where the auditory structure cre-
ated by the parameters makes a correlated and coherent con-
trol of parameters necessary, such as demonstrated for the
example of vowel transitions. Our ongoing research is now
directed at both the search for better ways to support the
understanding of speci�c biomedical signals such as EEG
and at the identi�cation of basic grounding principles for
successful soni�cation.
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