
Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

SONIPY: THE DESIGN OF AN EXTENDABLE SOFTWARE FRAMEWORK
FOR SONIFICATION RESEARCH AND AUDITORY DISPLAY

David Worrall, Michael Bylstra, Stephen Barrass, Roger Dean

Sonic Communications Research Group
University of Canberra

worrall@avatar.com.au, mbylstra@digitalfeast.com.au,
stephen.barrass@canberra.edu.au, roger.dean@uws.edu.au

ABSTRACT

The need for better software tools was highlighted in the 1997
Sonification Report [1]. It included some general proposals for
adapting sound synthesis software to the needs of sonification
research. Now, a decade later, it is evident that the demands on
software by sonification research are greater than those afforded
by music composition and sound synthesis software. This paper
compares some major contributions made towards achieving the
Report’s proposals with current sonification demands and
outlines SoniPy, a broader and more robust model which can
integrate the expertise and prior development of software
components using a public-domain community-development
approach.

[Keywords: sonification software, open source, python]

1. INTRODUCTION

To-date, software for data sonification has been developed either
as standalone applications engineered from first principles,
sometimes incorporating third-party low-level audio routines, or
as more expansive sonification ‘environments’ that attempt to
encapsulate some general principles and procedures that can be
adapted for specific sonification projects as the need arises.

The standalone applications tend to be designed for
individual experiments entailing clearly defined tasks such as
accurate monitoring [2], or graphic user-interaction [3], whereas
environments tend to be more expansive projects, often with less
deterministic outcomes. They afford greater flexibility than is
possible within standalone applications. Some recent
environments still in development [4][5] seem to have been
designed by first choosing a music composition environment and
working backwards, perhaps trusting that the data-processing
needs at the ‘input end’ can be adequately handled by the
language tools available from within the particular composition
system chosen. Considering that many software tools for music
composition have a long gestation period (in the case of Csound
[6], about forty years, for example) and are still being actively
developed, as can be witnessed, for example, by the daily
activity on the developer mailing lists for Csound and
SuperCollider [7], this approach is natural and is the approach
assumed in the Sonification Report [8].

In addition to the two primarily scripted environments just
mentioned, MAX/MSP [9] and its sibling PD [10] are another
type, which emphasises graphical user interfaces (GUIs) over
program code. Whilst the scripting-verses-GUI debate is still

active, it is clear from the large user-base and active
development of new patch objects for these platforms that the
GUI approach is appealing to some users and perhaps offers a
gentler initial learning curve for many exploratory sonification
researchers who are visually inclined. In any event, a
considerable investment of time is necessary to become
proficient in any of these environments and having made the
investment, a certain amount of environment “stickiness” is
apparent and understandable.

1.1. The First Bottleneck: Data

In data sonification, whilst the input data can be thought of
as eventually controlling the sound rendering, the
transformations it has to undergo in the interim can be
considerable. Such data processing can reasonably include
multidimensional scaling, filtering and statistical analysis which
itself may itself become the subject of sonification. Also, each
input dataset can have potentially unique structural
characteristics. Some, such as EEG data, may be multiple
channels of AC voltages with a variety of DC-biases and
noisiness as determined by the particular data collection setup on
a particular patient. Others, such as security data flowing from a
market trading-engine, will be massively paralleled, metadata
embedded and multiplexed into a single “feed.” Difficulties in
using such data are compounded when the it needs to be buffered
and streamed in non-real-time as is the need for multiple
overlays of time sequences of different temporal compressions.

High-level tools for processing such data complexities are
rarely, if ever, found in computer music environments, and even
less likely if the input data is spatial rather than temporal. When
such an a environment is the principle sonification tool, a
common response to complex data processing requirements is
for someone, where possible, to ‘bite the bullet’ and write data-
processing routines in the language of the composition
environment itself. This is currently the approach used by
SonEnvir [5] and OctaveSC [11], which both use SuperCollider
[7] and also the PD-based Interactive Sonification Toolkit [12].
Whilst SuperCollider’s SClang is a very elegant and powerful
composition environment that can support the development of
data-processing solutions, being unique, it lacks the
transportability that more general and widely available tools
afford. One consequence of this is that, in projects without a
dedicated programmer, practical assistance for what are
essentially data processing problems is more difficult to obtain.
Data is thus often pre-processed using external tools such as
spreadsheets and then read from files by the music composition

ICAD-445

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

environment; a procedure that, whilst it may be appropriate in
“limited data” experiments, is at best susceptible to data
corruption and of no use if the data is coming from a real-time
feed or from a dynamic model [13]

This situation may be characterised as ‘data
SONIFICATION’ i.e. the primary focus is on sound rendering
whilst input data is constrained so it can be dealt with adequately
by the rendering software. The alternative, an emphasis on data-
processing tools at the expense of sound rendering flexibility
(‘DATA sonification’) is no more attractive because the sound
palette tends to be small and the range of controls limited, the
outcome of which is too-often difficult to listen to over extended
periods of time. Some examples of this latter approach include
extensions for the Matlab numerical environment [14], AVS
Visualization Toolkit [15], Excel spreadsheets [16], and the R
statistical analysis package [17]. They provide data handling and
processing capabilities but very basic sample-based sound
capabilities modeled on the MIDI protocol. What are needed are
tools that afford a balanced, equally-flexible approach.

Excellent data-processing tools exist in the public domain
and are an integral part of much scientific research. Furthermore,
they are continually being extended and modernised by teams of
developers spread across the world. Yet because of the decision
to use a music composition environment for sound rendering,
these tools remain inaccessible to most sonification
environments. Whether this situation has come about because the
data for music composition by computer is mostly internally-
generated rather than externally-acquired is open to debate but
until sophisticated tools for handling externally-acquired often
massively multiplexed datasets can be brought to bear on the
acquisition, analysis, storage and re-presentation requirements of
the sonification process even before any mapping is undertaken,
let alone sound rendering, there is limited chance that such
software will enable the “choosing [of] mappings between
variables and sounds interactively, navigating through the data
set, synchronizing the sonic output with other display media, and
performing standard psychophysical experiments” that the
Sonification Report [8] envisaged.

1.2. Motivations

Sonic Communications Research Group members undertake a
wide variety of sonification tasks, ranging from sound
installations, data-bending improvisations and algorithmic
synaesthesia [18] to more empirically-based psychological
experiments. This range of activity necessitates flexible methods
for generating, shaping and translating input data, DSP-level
control of sound rendering, as well as methods for collecting and
analyzing participant reactions. We first came to consider
possible solutions the issues outlined in the previous section as a
result of the difficulties we experienced in trying to sonify the
same large multidimensional dataset on different hardware
platforms, under different versions of operating systems, and
with each sonifier having a preference and expertise in a
different collection of sound synthesis/music composition
programs. Whilst we are all technically literate, we soon realised
that if the difficulties we experienced were any indication, it
must be very difficult for almost everyone to be able to
confidently achieve consistent, repeatable results with anything
but the simplest datasets. This led us to specifying the
requirements for an experimental software sonification
framework. Some requirements are clearly identified in the

Sonification Report, others of our own concoction. We call the
framework SoniPy, in-keeping with the naming convention used
for frameworks that extend the Python programming language.

2. SONIPY: CONCEPTS AND REQUIREMENTS

SoniPy is designed to be a heterogeneous software framework
for data sonification research and auditory display. It integrates
various already existing independent components such as those
for data acquisition, storage and analysis, cognitive and
perceptual mappings as well as sound synthesis and control, by
encapsulating them, or control of them, as Python modules. The
choice of Python was not arbitrary, as it possesses all the
features of a modern modular programming language that we
consider essential for an experimental development environment.
Python is

a general-purpose programming language … which
may also serve as a glue language connecting many
separate software components in a simple and flexible
manner, or as a steering language where high-level
Python control modules guide low-level operations
implemented by subroutine libraries effected in other
languages. [19]

Other descriptors include: simple, but not at the expense of
expressive power, extensible, embeddable, interpreted, object-
oriented, dynamically typed, upwardly compatible, portable and
widely and freely available [20].

2.1. Design Requirements

As the Sonification Report’s Sample Research Proposal #3 [1]
acknowledges, the development of a comprehensive
“sonification shell” is not easy. The depth and breadth of
knowledge, and skills required to effect such a project are easily
underestimated. Whilst it has been a decade since the Report was
published, progress has been slow. This is not to criticise those
that have fallen by the wayside, nor those still in development,
but to acknowledge both the difficulties involved in such a
project and the need for new requirements if such projects are to
have a better chance of survival. We briefly address the
requirements indicated in the Sonification Report and add some
of our own.

Integrability. As discussed earlier with regard to data, due
consideration needs to be taken of the requirements of the
various components of the sonification and experimentation
process. As is the case with most interdisciplinary ventures, each
contributing discipline brings its collection of tools, techniques
and standards to the venture and they need to be synergistically
integrated. A software environment needs to be chosen that
supports this goal. It is for this reason we have chosen Python,
which can be used to “wrap” independent pieces of conformable
software in such a way as to permit data to flow between them.
We follow Python convention and call them Modules.

Flexibility. Rather than try to be the “killer application,”
SoniPy aims to wrap (inherit, or be extended by) the best
collection of Modules available to it. These Modules need to
have no computational interdependencies, though conceptually
they may be similar, thus ensuring that no one of them is
indispensable. Each of these Modules has evolved

ICAD-446

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

independently, probably over a considerable period of time.
Independent of SoniPy, they have their own ongoing
development teams that extend and improve then as well as
adapting them to ever-changing hardware and software
platforms.

Extensibility. In the situation where no Module exists for a
particular task, a new Module can be designed in the knowledge
that it will fit seamlessly within the existing Modular framework.
This implies all Modules need to be thread compliant.

Accessibility. It is desirable that as many Modules as
possible be known in their own right. This reduces learning
overhead for all users and enables work that may have already
been undertaken with those tools to be accommodated within the
SoniPy framework.

Portability. SoniPy needs to be able to be instantiated on all
major platforms. Furthermore, it is desirable, in certain
applications, for Modules to be instantiated on different
machines, in different locations and networked together: that is,
be heterogeneous.

Availability. To protect both authors and users, SoniPy needs
to be freely available with a minimum of restrictions. There are
numerous licensing flavours for public-domain software whose
source-code is made generally available, as outlined by the GNU
organisation [21]. Because SoniPy employs heterogeneous
components, the license of each component carries through into
SoniPy in a way that is standard practice in the software
industry. The SoniPy-specific components will be issued under
GPL General Public License Version 2 [22] thus encouraging the
sharing and free-exchange of these tools in the community at the
same time as enabling restrictions to be applied for individual
projects as confidentiality agreements demand. SoniPy’s sources
and documentation can be freely downloaded from its
Sourceforge Internet repository [23].

Durability. SoniPy needs to survive. Whilst survival can
never be guaranteed, in complex projects such as this, maximum
risk-mitigation is essential. SoniPy is unlikely to survive if it
remains the effort of a very small group. Essential to this is the
community involvement and support in ongoing improvement
and development: the very conditions under which SoniPy’s
independent modules have been, and continue to be, developed.

2.2. Integration Through Wrapping

Although Python comes with an extensive standard library and
there is a good resource of external Python libraries, we are not
limited to using Python libraries. A powerful feature of Python is
its set of well-defined interfaces to other languages. Libraries
written in most languages can be integrated through Python by
‘extending’ it [24]. The basic principle of SoniPy is to use
Python to ‘wrap’ independent software that can be compiled
with python bindings in such a way that data can flow between
them. Quite a few tools exist for the (semi-) automatic
generation of Python bindings, such as the Simplified Wrapper
and Interface Generator (SWIG) [25].

Some applications provide Python Application Program
Interface (API) libraries; other applications need to have a
Python API written in order to use it. Although some others
embed Python, either by bundling it as an interpreter or by
invoking the Python interpreter installed on the user’s system as
a basic API [26]. We mention embedding in this context
because, whilst it may be useful in its own right, it does not
provide the interface flexibility needed by SoniPy. SoniPy

requires an application to provide Python bindings so that
Python can be extended by the application.

3. THE DESIGN OF SONIPY

The SoniPy design specifies five Module Sets communicating
over two different networks: the SonipyDataNetwork (SDN) and
the SonipyControlNetwork (SCN). Modules are grouped
according to their role in the data sonification process: Data
Processing (DP), Conceptual Modeling (CM), Psychoacoustic
Modeling (PM), Sound Rendering (SR) and Monitoring &
Feedback (MF). Depending on the dictates of a particular
project, modules in a Set may be instantiated on different
machines. A particular Module Set may be empty, i.e. contain no
modules, or a particular module may belong to more than one
Module Set.

3.1. Inter-Module Communication: The Networks

SoniPy’s modular design makes it well suited for the
instantiation of all selected modules on a single processor or, in
order to take advantage of the computing power that multiple
CPUs and machines can afford, the distribution of modules over
multiple CPUs, a LAN or the Internet. We are currently
extending Python 2.4 under OSX 10.4.9 but workable
alternatives will flow as the development team expands.

Python’s platform independence enables SoniPy to be
distributed over a heterogeneous network. Other potential uses of
a distributed approach include mobile phone sound-rendering
and the processing of data remotely under local control, perhaps
with the result being sent to another site for mapping, and
psychoacoustic adjustment before being rendered to sound.

We are in the process of testing different approaches to
distributing the computing in order to maximally benefit from
the trade-off between performance (including real-time latency,
data throughput and CPU overhead issues), ease-of-use,
maintainability, reliability (over a network), scalability and
heterogeneity; that is, the ability for non-Python third-party
applications or devices to communicate with SoniPy modules.
[27]. Communication technologies being tested range from class
inheritance, Sockets, OSC and MIDI through to network audio
mixing, using Netjack [28] for example.

Referring to Figure 1, which is a diagrammatic
representation of the way Module Sets interrelate, it can be
observed that SoniPy’s modules operate through two networks:
Data and Control. The SonipyDataNetwork (SDN) is
topologically configured as a Bus whilst the
SonipyControlNetwork (SCN) is a star configuration. This is
analogous to the signal and control busses of an automated audio
mixing desk. Control routing uses the same network technology
as Data, though the destinations may be different. For example
data from a DP module may be sent to a CM module on the SDN
bus, under the control of an MF module communicating on the
SonipyControlNetwork, without the data itself needing to go
through an MF module. Sonipy Controls need to be XML
compliant and each Module Set may itself be the hub of a
network of processors of topology unknown to the SCN router.

ICAD-447

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

Figure 1. Flow Diagram of SoniPy’s Five Module Sets and Two Networks

3.2. The Modules

Whenever possible, local modules are instantiated as library
extensions to the Python programming framework. Should a
module be instantiated remotely, that instantiation and the
control of information to and from it remains under the control
of the MF module that initiated the instantiation, where the main
application loop as well as thread and GUI controls resides.

Table 1 provides an overview of some Key features of the
Module Sets.

3.2.1. Data Processing

As the principal data processing activity in data sonification is
taking place inside the listeners, the role of sonification is to
prepare source data in a format that enables the listener to extract
information, and in interactive systems, to take account of their
feedback. SoniPy’s Data Processing (DP) modules consist of a

number of Object-Oriented classes which themselves inherit
Data Classes and Control Classes according to the form and
location of the raw data and its intended destination. Class
methods include those for

• Interpolated lookup and mappings, for Auditory Icons

and Earcons, for example,
• Writing data to and extracting it from storage (memory,

database and/or flat file) for pre-processing or multi-
stream playback,

• Audification - writing data in formats acceptable as direct
input to audio hardware,

• Simultaneous handling of multiple time-locked streams,
such as from biomedical monitors,

• Deconstruction, analysis and filtering, including of
complex meta-tag embedded multiplexed streams, such
as a data feed from a stock-market trading engine,

• Model-based sonification involving user feedback, and
• Simulation of data feeds, including buffering with time

compression and expansion.

ICAD-448

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

Figure 2. A representation of one configuration of SoniPy’s Data Processing modules
under SCN

Data and Control Class instances can be manipulated with SciPy
(Scientific Python) [29] a collection of open-source libraries for
mathematics, science, and engineering. The core library is
NumPy (Numeric Python) that provides convenient and fast N-
dimensional array manipulation. Figure 2 is a diagrammatic
representation of one way of configuring SoniPy’s Data
Processing modules under SCN control.

3.2.2. Conceptual Modeling and Data Mapping

Information mapping is divided into separate cognitive and
psychoacoustic stages. The cognitive stage involves the design
of "sound schemas" with semiotics, metaphors and metonyms
relating to the task, and aesthetic and compositional aspects
relating to genre, culture and palette. Decisions have to be made
about functionality, aesthetics, context, learnability,
expressiveness, and device characteristics. These decisions are
typically draw from existing knowledge and theories from
relevant sciences, arts and design. The consequences of these
compounding decisions are difficult to predict empirically: one
of the reasons why sonification is currently more of an heuristic
art than a science. Nevertheless, as different conceptual models
are developed, some based in cognition, others culturally
determined, they can be integrated into SoniPy using the
wrapping techniques outlined.

One example is the TaDa method; a design approach to
sonification that provides a systematic user-centred process to
address the multitude of decisions required to design a
sonification [30]. TaDa starts from a description of a use case
scenario, and an analysis of the user's task, and the
characteristics of the data. This analysis informs the specification
of the information requirements of the sonification.

SoniPy’s support for the TaDa method will be through a
python-based GUI that captures a user scenario and provides
standard TaDa fields for analysis. This GUI is connected using
the SDN to a mySQL database that contains about 200 stories
about everyday listening experiences, analysed using the TaDa
data-type fields. This database, called Earbenders, is a case-
based tool for looking up "sound schemas" at the cognitive

design stage [31]. In future, a python interface to the
SonificationDesignPatterns [32] wiki could be developed as an
alternative Pattern Language approach for cognitive level design.

3.2.3. Psychoacoustic Modeling

The Psychoacoustic Modeling stage involves the systematic
mapping of information relations in the data to perceptual
relations in the sound schema [33]. SoniPy provides support for
this by allowing interactive reconfiguration of the mapping from
information relations to auditory relations. Changes in this
mapping cause the automatic remapping of source information
through psychoacoustic algorithms (using NumPy and SciPy) to
produce new sounds and/or rendering controls. For example a
change from categorical to ordered information could
automatically produce a remapping from a categorical sound
(e.g. instrument, object, stream) to an ordered property of a
sounding object (e.g. length, excitation, distance).

3.2.4. Sound Rendering

SoniPy provides a sonifier access to many more options than if a
music composition or sound synthesis environment was chosen
before beginning the development of other aspects of the data
sonification framework. For low level audio work, a Portaudio
[34] module can be used for audification and as the basis for the
development of other such modules should the need arise.
SndObj [35] is a middle-level toolkit also immediately available
in the same manner. In a similar vein the STK toolkit [36]
appears to be wrappable, as does the higher-level RTCmix C++
library [37]. At the time of writing the Csound developers are
working on a version of Csound5 that has an embedded Python
API.

Whilst some high-level applications such as Max/MSP and
PD, are unlikely to become toolkits, it is still possible to use
them by instantiating them independently and communicating
with them via OSC [38] and MIDI [39]. SuperCollider3 is a

ICAD-449

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

special case because of its inherent modularity: the sound-
rendering component (SCsynth) can be instantiated as a separate
program to the language (SClang). Communication between this
‘external’ SCsynth occurs over OSC using the SoniPy
framework as an alternative to Sclang. If very low-latency is a
requirement, such as may be the case for interactive
sonifications, the pySCLang module enables direct
communication with an instantiation of the SC language and its
internal sound renderer.

Non-operating system dependent Text-t-Speech synthesis is
available through Python wrappings of, using Espeak [40] or
Festival [41]. We are currently building PySpeak, a Python API
to an OSX thread-compliant version of Espeak.

3.2.5. Monitoring, Feedback and Evaluation

Monitoring and Feedback of SDN and SCN can happen via the
Python interpreter. Having access to an interpreter in order to
build a complete sonification by iteratively building on small
tests is a powerful aspect of Python. Heterogeneous connectivity
also allows the consequences of decisions at each stage to be
tested on a compound design, thus enabling better understanding
and control of non-linear and emergent effects in an overall
design.

For GUI, wxPython provides access to wxWidgets [42] and
wxGlade [43] can assist in more-rapid development of GUIs by
automatically generating Python control code and separating the
GUI design and event-handling code. If a relatively consistent
interface across all hardware platforms is more desirable, Tcl
[44] GUI building tools are available through native Python
modules.

By including an Evaluation Module, it will be possible to use
SoniPy to design different types of empirical experiments, and
conduct and analyse the results within a single framework. A
user-contributed library of experiments for evaluating a
sonification design could assist in developing some standards for
measuring the functionality, aesthetics, learnability,
effectiveness, accuracy, expressiveness and other aspects of a
design. These evaluations could thus assist in choosing between
different designs for a particular sonification task.

4. EXAMPLE

The following example illustrates the SoniPy Framework in
action. The first task is to accept a multiplexed meta-tagged data
stream from the Australian Stock Exchange (ASX) trading
engine. The ASX is medium-sized exchange, on which about
3,500 securities are traded. It generates about 100 MB of trading
text data daily, making it impractical to hold enough data in
RAM to do all the calculations necessary.

The data is processed into a MySQL database using an
Object-Relation Mapping paradigm supported by the sqlobject
module [45]. This abstracts the handling of the dataset, providing
an interface between the tables and indices database paradigm
and Python’s object-orientation. Other modules (such as
mySQLdb) exist if direct interaction with the database server in
MySQL code is more appropriate.

A list of securities that meet, or are likely to meet, the
criteria necessary for a sonification event to initiated, is held in
RAM and processed as a multidimensional array using the
numpy module. When the criteria are met this data is also used

as some of the input parameters to the sound renderer. The
pyspeak module is invoked to synthesise the name of the
security being newly rendered.

In this example, the sound is rendered by the Supercollider 3
‘external synthesis engine, scsynth, with which the python
scsynth module bi-directionally communicates using the OSC
protocol. This permits the use of synthdefs (synthesis definition
algorithms) that are capable of responding to the criteria as
established or as modified in real-time. Other synthesis options,
such as the lower-level pysndobj or pyaudio (the python
interface to portaudio) are possible, as is the libsndfile library.

The python code example illustrates how SoniPy combines
Python code, imported 3rd party modules and user-defined
scripts.

5. CONCLUSION

Sonification research is an interdisciplinary activity and in
the past, tools for undertaking it have either been discipline-
specific, modified to accommodate the interconnections, ad-hoc
collections of tools or stand-alone programs developed for a
specific task. Because SoniPy’s open architecture design can
integrate modules conforming to widely accepted inter-process
computation standards (wrappable libraries), it will be possible
for it to grow in most directions its user-community needs it to.

ICAD-450

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

Instead of sonification researchers trying to make a decision
about which particular piece of software to use for an
experiment, based hopefully on a best-fit evaluation of existing
software capabilities, SoniPy can afford a continuity a
framework of both existing and developing of tools not currently
available. This should assist individual endeavour and promote
the independent evaluation of empirical experimentation
necessary for scientific validation. There is currently, for
example, a dearth of good public-domain software for
experimental psychology involving sound and the integration of
such a Module Set into SoniPy would be a welcome addition.

By establishing SoniPy an open source project we hope to
share our work with others who in return will contribute to a
framework that is capable of great flexibility general usefulness
to the sonification community.

6. APPENDIX OF ACRONYMS USED

AC – Alternating Current
API – Application Program Interface
CM – Conceptual Module
CPU – Central Processing Unit
DC – Direct Current
EEG – Electroencephalogram
GNU – GNU is not Unix
GUI – Graphic User Interface
LAN – Local Area Network
MF – Monitoring and Feedback
MIDI – Musical Instrument Digital Interface
OSC – Open Sound Control
SCN – SoniPy Control Network
SDN – SoniPy Data Network
SQL – Structured Query Language
SR – Sound Rendering
SWIG - Simplified Wrapper Interface Generator
XML – eXtensible Markup Language

7. REFERENCES

(all URLs current as at 20070201)

 [1] G. Kramer et al. Sonification Report: Status of the Field
and Research Agenda. Prepared for the National Science
Foundation by members of the International Community
for Auditory Display. 1997. Located at
http://www.icad.org/websiteV2.0/References/nsf.

[2] C. Chafe and R. Leistikow. “Levels of Temporal
Resolution in Sonification of Network Performance,” in
Proceedings of the 2001 International Conference on
Auditory Display, Espoo, Finland, July 29-August 1, 2001

[3] B. Walker and J.T. Cothran, “Sonification Sandbox: A
Graphical Toolkit for Auditory Graphs,” in Proceedings of
ICAD 2003, Boston, 2003.

[4] S. Pauletto and A. Hunt, “A Toolkit for Interactive
Sonification,” in Proceedings of ICAD 04-Tenth Meeting
of the International Conference on Auditory Display,
Sydney, Australia, July 6-9, 2004.

[5] A. de Campo, R. Frauenberger and R. Höldrich,
“Designing a generalized sonification environment” in
Proceedings of ICAD 04-Tenth Meeting of the

International Conference on Auditory Display, Sydney,
Australia, July 6-9, 2004.

[6] http://www.counds.com/
[7] http://www.audiosynth.com/
[8] Kramer, G. et. al. 1997. op. cit. Section 5.3. “Developing

Sonification Tools”
[9] http://www.cycling74.com/
[10] http://crca.ucsd.edu/~msp/software.html/
[11] T. Hermann. 2006.

http://www.sonification.de/projects/sc3/index.shtml/
[12] S. Pauletto, S. and A. Hunt. “A toolkit for interactive

sonification,” in Proceedings of ICAD 04-Tenth Meeting of
the International Conference on Auditory Display, Sydney,
Australia, July 6-9, 2004.

[13] T. Bovermann, T. Hermann, and H. Ritter. “Tangible Data
Scanning Sonification Model.” Proceedings of the 12th
International Conference on Auditory Display, London,
UK June 20 - 23, 2006

[14] J.A. Miele. “Smith-Kettlewell display tools: a sonification
toolkit for Matlab,” in Proceedings of the 2003
International Conference on Auditory Display, Boston,
MA, USA, 6-9 July 2003.

[15] B. Kaplan. “Sonification in AVS,” in AVS ’93, Walt
Disney World, Lake Buena Vista, FL, May 24-26 1993.

[16] T. Stockman, G. Hind, G. and C. Frauenberger.
“Interactive Sonification Spreadsheets,” in Proceedings of
ICAD 05-Eleventh Meeting of the International
Conference on Auditory Display, Limerick, Ireland, July 6-
9, 2005.

[17] M. Heymann and M. Hansen M. A new set of sound
commands for R. Sonification of the HMC algorithm. in
Proceedings of the Acoustical Society of America (ASA),
2002.

[18] R.T. Dean, M. Whitelaw, H. Smith and D. Worrall. "The
Mirage of Algorithmic Synaesthesia: Some Compositional
Mechanisms and Research Agendas in Computer Music
and Sonification." Contemporary Music Review 25, 311-
327. 2006.

[19] A. Watter, G.Van Rossen, J. Ahlstrom, J. Internet
Programming with Python. M&T Books, NY, NY. 1996.

[20] http://www.python.org/
[21] http://www.gnu.org/philosophy/categories.html
[22] http://www.gnu.org/copyleft/gpl.html
[23] http://sonipy.sourceforge.net/
[24] M. Lutz. Programming Python. O'Reilly & Associates.

1996. Chapter 14, p505.
[25] http://www.swig.org/
[26] ibid, Chapter 15, p571.
[27] G. Coulouris, G. Dollimore, G. and T. Kindberg.

Distributed systems: concepts and design. Addison-
Wesley, Boston, MA. 2005.

[28] http://netjack.sourceforge.net/
[29] http://www.scipy.org/
[30] S. Barrass. TaDa! Demonstrations of Auditory Information

Design, in Proceedings of the Third International
Conference on Auditory Display ICAD'96, Xerox PARC,
Palo Alto, California. 1996.

[31] S. Barrass. “EarBenders: Using Stories About Listening to
Design Auditory Interfaces,” in Proceedings of the First
Asia-Pacific Conference on Human Computer Interaction
APCHI'96, Information Technology Institute, Singapore.
1996.

ICAD-451

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

[32] S. Barrass. “Sonification from a Design Perspective”,
Invited Keynote, in Proceedings of the Ninth International
Conference on Auditory Display, ICAD 2003, Boston
USA. 2003.

[33] S. Barrass. “Sculpting a Sound Space with Information
Properties,” Organised Sound 1(2):125:136 1996.
Cambridge University Press, UK.

[34] P. Burk and R. Bencina. "PortAudio–An open source cross
platform audio API" in Proceedings of the ICMC, La
Habana, Cuba. 2001.

 [35] V. Lazzarini. “The Sound Object Library,” Organized
Sound 5(1):35-49. 2000. Cambridge University Press,
Cambridge, UK.

[36] G.P. Scavone and P. Cook, P. “RtMidi, RtAudio and a
synthesis toolkit (STK) update,” in Proceedings of the

2005 International Computer Music Conference,
Barcelona, Spain, 2005.

[37] http://www.rtcmix.org/
[38] M. Wright, A. Freed, and A. Momeni. “Open sound

control: State of the art 2003,” in Proceedings of the 2003
Conference on New Interfaces for Musical Expression.
National University of Singapore , Singapore. 2003.

[39] http://www.midi.org/
[40] http://espeak.sourceforge.net/
[41] http:// www.cstr.ed.ac.uk/projects/festival/
[42] http://www.wxwidgets.org/
[43] http://wxglade.sourceforge.net/
[44] http://www.tcl.tk/
[45] http://www.sqlobject.org/

ICAD-452

