
Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

DIN OF AN “IQUITY”:
ANALYSIS AND SYNTHESIS OF ENVIRONMENTAL SOUNDS

Perry R. Cook (with lots of help)#

Princeton University Soundlab
Department of Computer Science (also Music)

Princeton, NJ, USA
prc@princeton.edu

ABSTRACT

This paper describes a series of related research and software
projects in the analysis and synthesis of stochastic sounds in
general, and more specifically, applications in the synthesis of
environmental sounds. Analysis and synthesis of sounds as
varied as a maraca (many beans bouncing around in a gourd), to
groups of noise-making animals and insects, to human applause
will be covered. Specific open-source project software will be
described, such as the “Shakers” and “Flox” classes in the
Synthesis ToolKit in C++ (STK), GaitLab (analysis and synthesis
of walking sounds), ClapLab and ClaPD (synthesis of applause),
TAPESTREA (Techniques and Paradigms for Expressive
Synthesis and Transformation of Environmental Audio), and the
new audio programming language ChucK.

[Keywords: Environmental Sound, Background Sound, Din]

1. INTRODUCTION

To begin, the author should explain the liberty taken in coining a
new word, “iquity” in the title (a pun on “den of iniquity, often
used to describe houses of ill repute, opium dens, hashish parlors
etc.). “Iquity” comes from the word “iniquity,” meaning
injustice or wickedness, whose etymology is from “in” meaning
not, and the Latin “aequus” meaning equal.

“Din” is defined as a collection of discordant sounds or
constant noise. We define it as background sound, or that which
is left after one accounts for and removes all foreground sounds.
Examples of foreground sounds might include the person close to
us at the cocktail party talking directly to us, or a horn honking
on a busy street. The din in these cases would be the mixture of
other conversations (minus our conversation) or the noise of the
street minus the horn honk. So “Din of An Iquity” refers to our
attempts to do justice to the background sounds, or to do as good
a job as possible (or computationally affordable), to give the
impression of the din we attempt to model (perceptual equality).

A few researchers have investigated the modeling of
continuous background sound [1][2], often referring to it as audio
“texture.” Indeed there is a large literature in the graphics
community on visual texture modeling and synthesis, and in the
haptics (combined senses of touch) community on modeling and
synthesizing the “feel” of objects, including their texture, using
computer-driven motors and vibrators.

The projects described here assume that the acoustic source
of many environmental sounds is an ensemble of individual
sound-producing objects or entities, joining to make a perceptual
whole. So a “bunch of hand claps” might be called applause, or a
collection of small metal cymbals attached to a shaken ring might
be called a tambourine. A gaggle of geese has a sound unique

from a swarm of locusts, or a collection of many different
conversations at a cocktail party. We do not endeavor to model
all of these in this paper, but do attack a number of them.

2. RANDOM PHYSICAL EVENT MODELING

In 1995 the author launched into a new research agenda aimed at
physical modeling of the most varied single section of any
orchestra, the so-called “percussion section,” which actually
includes pretty much anything that isn’t a bowed-string or wind
instrument. Drums of all kinds, mallet percussion (marimba,
xylophone, glockenspiel, vibraphone, orchestral chimes), claves,
castanets, shakers (maraca, tambourine, sleighbells, sekere),
scrapers and ratchets (guiro, ratchet), brake drums and other
found or manufactured metal/wood objects, and even the celeste
(a keyboard-controlled set of orchestra bells) and piano often are
counted among the percussion instrument “family.”

Of most interest to the author were the shakers, scrapers, and
ratchets; the noisy things that have a specific character, yet when
a single sample is played back over and again it becomes
perceptually obvious that it is a single sample. After doing a
series of exhaustive simulations where all particles, (beans in a
virtual maraca shell) were modeled in 3D, some observations
about the physical acoustical system and the statistics of
collisions were made that yielded a great simplification in the
computational n-body algorithm. These observations were that:

1. Once excited (by shaking the maraca), the total kinetic

energy in the system decays exponentially. Thus the
radiated sound energy also decays exponentially.

2. Collisions between particles inside the outer shell do not

cause sound to be radiated; only collisions of particles
with the shell itself cause it to be excited.

3. The shell radiates the sound, while performing resonant

filtering on the bean/shell collision impulses, and the
characteristics of the shell filter are relatively constant.

4. The amount of excitation of the shell is proportional to

the cosine of the angle between the incident particle and
the shell normal, which is roughly random given:

5. The likelihood of sound-producing collisions follows

roughly a Poisson distribution, as does the incident angle
of the particle colliding.

These observations led to the PhISEM (Physically Inspired

Stochastic Event Modeling) algorithm [3][4]. As a simple

ICAD-167

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

example, here is the C code required to compute a simple maraca
sound:

// ANSI C Code to Calculate Single Sample of Maraca Algorithm
#define SOUND_DECAY 0.95
#define SYSTEM_DECAY 0.999
shakeEnergy*=SYSTEM_DECAY; // Exponential system decay
if (random(1024) < num_beans) // If collision
 sndLevel += gain * shakeEnergy; // add energy to sound
input = sndLevel * noise_tick(); // Actual sound is random
sndLevel *= SOUND_DECAY; // Exponential Sound decay
input -= output[0]*coeffs[0]; // Do simple
input -= output[1]*coeffs[1]; // system resonance
output[1] = output[0]; // filter
output[0] = input; // calculations

Looking around for other sound-producing systems which

could be modeled by this algorithm (or simple extensions to it)
yielded quite a large list including many of the orchestral
percussion, but also many non-musical sounds ranging from ice
cubes in an empty glass, to wind chimes, to leaves crunching
under feet while walking [5][6]. These and others were
implemented in the Shakers.cpp class of the open-source
Synthesis ToolKit in C++ (STK)[7][8]. A total of five filters are
available to implement resonances of the system being modeled,
and algorithmic rules control how these filters are used
depending on the system. Figure 1 shows the PhISEM model
block diagram.

Figure 1. PhISEM synthesis block diagram.

The PhISEM algorithm has been used for a number of
psychoacoustic experiments [9][10] as well as the synthesis of
sound effects.

3. GAITLAB: MODELING OF WALKING SOUNDS

The observation that the “texture” underfoot while walking
imparts a different character to the sound produced (walking on
gravel, slogging through mud, crunching through snow, leaves,
sticks, etc.) gave rise to the GaitLab project [11]. In this, a model
of the pseudo-periodicity (and random variations) of footfalls
from walking sounds was developed, and used to drive the
PhISEM model, or random overlap-add playback of segments of
the original sound. Figure 2 shows the GaitLab analysis/synthesis
system block diagram. Figure 3 shows a simple GaitLab
graphical user interface, with various controls for left/right
symmetry randomization, etc.

Figure 2. “GaitLab” architecture. Sound is first segmented,

parameters are extracted and parameterized, then synthesis is
performed using either randomized segments of the original

sound, or a parametrically driven PhISEM algorithm.

Figure 3. Simple GaitLab synthesis control GUI.

Figure 4 shows the PhOLeyMat from the PhOLISE (Physically
Oriented Library of Interactive Sound Effects) project, in which
force sensors beneath 9 different tiles are used to drive 9
differently calibrated GaitLab walking sound textures including
grass, wood, coarse gravel, fine gravel, tile, and carpet.

ICAD-168

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

Figure 4. GaitLab’s “PhOLIEMat” PhISEM controller.

4. FLOX: SYNTHESIS OF SONIC “HORDES”

As previously mentioned, many environmental sounds are
composed of multiple sound sources, acting independently,
adding together to create the background din. Sometimes the
sources are all of the same type, as is the case in applause, a flock
of birds chirping, a forest full of crickets, and many other such
collections. The Flox.cpp class, implemented in STK, allows
control of from 0 to N sound producing objects. The maximum
value of N is set when a new Flox instance is created. The sound
producing objects can be shakers, clappers, crickets, frogs, etc.
They can be short sound clips, or even musical models of
plucked strings or marimbas. The Flox object controls the
placement in the stereo field, triggering, resonant frequencies,
etc. with control over randomization of each parameter.

4.1. Synthesis of Clapping and Applause

The Flox class in STK was created for synthesis of applause as
an ensemble of analyzed individual clappers. The author found
another group in Finland researching the problem [12], and [13]
resulted as a joint publication on the similar (yet different)
approaches to the topic. First data was collected from human
hand clappers. A simplified (no need to estimate # particles)
GaitLab (Figure 2) architecture worked well with only minor
adjustments for segmenting, analyzing, and extracting parameters
from the clapping sounds. Table 1 shows the mean and standard
deviations of the period T (duration between claps) and center
resonant frequency F1 for four male and four female clappers.

Subject Mean T (s) STD Mean F1 STD
M1 .256 .0093 1203Hz 278
M2 .327 .0083 435 40
M3 .276 .0128 3863 1009
M4 .265 .0060 1193 243
M5 .238 .0061 1519 219
M6 .284 .0077 2243 775
M7 .298 .0100 1515 239
M8 .285 .0016 1928 764

Table 1: Handclap statistics for four males and four females.

Figure 5 shows the spectrum of a single handclap, superimposed
with the spectrum of the impulse response of a low order (two
pole) resonant filter designed by least-squares fit using Linear
Predictive Coding (LPC).

Figure 5. LPC fit to spectrum of single handclap.

The synthesis architecture of Figure 1 works well for clap
synthesis when modified by replacing the Poisson probability
calculation (the “// if collision” line in the C Code example
above) with a periodicity calculation, with randomness to model
the standard deviation in period. Again, a low order resonant
filter works well for clapping.

As we know, audiences don’t behave entirely as autonomous
clappers, sometimes synchronizing, then falling out of phase,
then back again, sometimes speeding up as well. Figure 6 shows
the interface for ClapLab, which includes controls for mean and
standard deviation (randomness) of center frequency, period
(tempo), and “affinity” (the tendency of the clappers to clap in
unison, with 0 causing completely random applause and 128
meaning perfectly synchronized applause. The #Objects slider
selects individual clappers from the human subject data for
numbers 1-8, and adds more clappers with random parameters for
numbers 9-128, resulting in a maximum of 129 total clappers.

Figure 5. ClapLab graphical user interface.

4.2. Synthesis of Other Hordes, Flocks, Swarms, etc.

As mentioned previously, the STK Flox class can also be
used to control other quasi-homogeneous noisemaking
ensembles, such as birds, frogs, crickets, or even musical
instrument sounds and models. Figure 5 above shows such
selection buttons, and Figure 6 shows a display written in Open
GL for displaying the events. Each “character” appears when
their sound is triggered, then rapidly fades away in the graphical
display.

ICAD-169

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

Figure 6. Flox GL display of synthesized noisemakers.

5. TAPESTREA

TAPESTREA is a technique and system for “re-composing”
recorded sounds by separating them into unique components and
weaving these components into sonic tapestries. The technique
and system is applicable to sound-design [14], interactive sound
environments [15], and musique concr`ete or acousmatic music
composition [16]. The TAPESTREA analysis screen provides a
GUI for interactively separating sound scenes into deterministic
(sinusoidal) components [17], transients [18], and the remaining
stochastic background sound (our definition of “din”). Figure 7
shows the overall system architecture of TAPESTREA.

Figure 7. Architectural pipeline of TAPESTREA.

Figure 8 shows the sinusoidal/stochastic analysis screen with
interactive waveform (time segment selectable) and spectral (an
arbitrary rectangle can be selected in the spectrogram) displays,
and controls for extraction parameters.

Figure 8. TAPESTREA analysis GUI.

The internal representation of a stochastic background

template begins with a link to a sound file containing the related
background component extracted in the analysis phase.
However, merely looping through this sound file or randomly
mixing segments of it does not produce a satisfactory background
sound. Instead, our goal here is to generate ongoing din that
sounds controllably similar to the original extracted stochastic
background. Therefore, the stochastic background is synthesized
from the saved sound file using an extension of the wavelet-tree
learning algorithm [2]. In the original algorithm, the saved
background is decomposed into a wavelet tree where each node
represents a coefficient, with depth corresponding to resolution.
The wavelet coefficients are computed using the Daubechies
wavelet with 5 vanishing moments. A new wavelet tree is then
constructed, with each node selected based on the similarity of its
ancestors and first k predecessors to corresponding sequences of
nodes in the original tree. The learning algorithm also takes into
account the amount of randomness desired. Finally, the new
wavelet tree undergoes an inverse wavelet transform to provide
the synthesized time-domain samples. This learning technique
works best with the separated stochastic background as input,
where the sinusoidal and transient events have been removed.

This chopping and randomized re-use is somewhat similar to
“granular” synthesis from computer music [19][20][21], but here
the tree and derived statistics provide a specific and automatic
means for structuring the sound for transformation and re-
synthesis. Also, rather than chopping up the original waveform,
the wavelets perform the chopping in multiple frequency bands.

TAPESTREA uses a modified and optimized version of the
wavelet-tree algorithm, which follows the same basic steps but
varies in details. For instance, the modified algorithm includes
the option of incorporating randomness into the first level of
learning, and also considers k as dependent on node depth rather
than being constant. More importantly, it optionally avoids
learning the coefficients at the highest resolutions. These
resolutions roughly correspond to high frequencies, and
randomness at these levels does not significantly alter the results,
while the learning involved takes the most time. Optionally
stopping the learning at a lower level thus optimizes the
algorithm and allows it to run in real-time.

ICAD-170

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

Further, TAPESTREA offers interactive control over the
learning parameters in the form of “randomness” and “similarity”
parameters. The size of a sound segment to be analyzed as one
unit can also be controlled, and results in a “smooth” synthesized
background for larger sizes versus a more “chunky” background
for smaller sizes.

Other means for creating din in TAPESTREA involves the
use of loops of single deterministic and/or transient templates
with full control over randomization of pitch, timing, and
frequency/regularity of occurrence. We also offer “mixed bags,”
which allow the synthesis of a collection of templates, selected at
random and synthesized with full control over randomization of
pitch, time, frequency/regularity of occurrence, etc. Figure 9
shows the control screen for synthesis, including a timeline for
placing synthesized objects (top), a collection of extracted
templates of various types (lower left), and controls for
transformation/resynthesis of templates (lower right).

Figure 9. TAPESTREA synthesis GUI.

6. SYNTHESIS OF DIN USING CHUCK

ChucK is a new real-time audio programming language that
allows precise control over timing and concurrency [22]. Similar
to C++, Java, and other object-oriented languages, Chuck differs
significantly by use of the ChucK operator (=>) for assignment,
patching of unit generators, and other functions. Further, along
with containing functions such as Std.Math (greatly extended
beyond the ANSI standard C math.h library), and built-in unit
generators such as SinOsc(), adc, dac, etc., all STK instrument
and effects objects are compiled into ChucK as native unit
generators. ChucK also provides full support for MIDI, Open
Sound Control (OSC), and a variety of input devices (mice,
joysticks, ASCII keyboards, Bluetooth devices (such as the
Nintendo Wii controller), and the accelerometers, microphones,
and cameras built into many modern laptops).

This code example shows the synthesis of applause using
only one recorded soundfile as a source. The file clap.wav is
loaded into 10 sound player objects (SndBuf claps[10]), and
connected to a mixer (Gain object g), through a reverberator
object (JCRev r) to the output sound hardware (dac). The claps[]
instances each load the same sound file (clap.wav), connect to the
mixer, and then “spork” (fork) a “shred” (thread) which claps
forever with pseudo-randomized pitches, gains, and clapping
periods. The program ends with an infinite loop that keeps the
clapping going forever (until Control-C is pressed, or the
“remove shred” button is pressed in the MiniAudicle [23] GUI.

// ANSII C Code example for applause synthesis in ChucK

Gain g => JCRev r => dac; // gain into Reverb into Audio Out
0.1 => r.mix; // amount of reverb

SndBuf claps[10]; // make 10 wave players
[0.25,0.35,0.25,0.35,0.25,0.4,0.15,0.25,0.2,0.277] @=> float rates[];
[1.0,0.75,0.8,0.85,0.9,0.95,0.7,1.05,1.1,1.15] @=> float pitches[];

int i; // iterator variable

for (0 => i; i < 10 ; i++) { // run through all 10 clappers
 "clap.wav" => claps[i].read; // load the sound file

claps[i] => g; // connect them to the mixer
 spork ~ clapper(i); // and tell them to start clapping
}

fun void clapper(int i) {
 while (1) { // clap forever

Std.rand2f(0.5, 1.0) => claps[i].gain; // random gain
pitches[i] * Std.rand2f(0.85,1.15) => claps[i].rate; // rand. pitch

 0 => claps[i].pos; // trigger wave
 rates[i] * Std.rand2f(0.9,1.1) :: second => now; // rand. period
 }
}

while (1) 1.0 :: second => now; // run forever so shreds stay alive

// END CODE EXAMPLE

Within TAPESTREA, even finer control over the synthesis can
be obtained through the use of ChucK as a score/control/
scripting language, used for specifying precise parameter values
and for controlling exactly how these values change over time.
ChucK is woven directly into the TAPESTREA synthesis GUI,
and can be used to move multiple controls at a time at arbitrary
rates (can’t do this with a mouse!). Since ChucK allows the user
to specify events and actions precisely and concurrently in time,
it is straightforward to write scores to dynamically and
interactively evolve a sound tapestry.

A ChucK virtual machine is attached to TAPESTREA, which
registers a set of API bindings with which ChucK programs can
access and control sound templates and automate tasks. Each
script (called a shred) can be loaded as a sound template and be
played or put on timelines. Scripts can run in parallel,
synchronized to each other while controlling different parts of the
synthesis. Also, scripting is an easy way to add “traditional”
sound synthesis algorithms and real-time control via MIDI and
Open Sound Control.

7. ADDITIONAL FILES

STK is available at:
http://ccrma.stanford.edu/software/stk/

ClapLab is available at :

http://soundlab.cs.princeton.edu/software

ClaPD and Levi Peltola’s thesis are available at:
http://www.acoustics.hut.fi/publications/files/theses/lpeltola_mst

TAPESTREA is available at:

http://taps.cs.princeton.edu

ChucK and miniAudicle are available at:

http://chuck.cs.princeton.edu

ICAD-171

Proceedings of the 13th International Conference on Auditory Display, Montréal, Canada, June 26-29, 2007

8. CONCLUSIONS

This paper has described a series of related projects in the
analysis and synthesis of stochastic sounds in general. Many
environmental sounds are of this type, where an ensemble of
individual sound-producing objects or entities combine to make a
whole. The sources of such sounds can be as varied as human
applause, flocks of birds, swarms of bees or locusts, wind
through a forest, choirs of singing voices, and many other “crowd
scenes.” The author is currently assembling and editing a book
with the working title: “Sonik Flox: Analysis and Synthesis of
Horde Sounds,” which will include some classic papers as well
as new work in the field. There is still much work to be done,
however, and I look forward to new advances in this challenging,
often overlooked and deemphasized (many people simply resort
to the use of sample loops for background sound) yet very
important, area of sound analysis/synthesis.

9. #ACKNOWLEDGEMENTS

Thanks to Gary Scavone for taking co-ownership of, updating,
maintaining, and documenting STK since 1998. Thanks to Steve
Lakatos for using particle models for many psychoacoustic
experiments. Thanks to Ge Wang for creating ChucK (with help
from other Princeton soundlab members). Thanks to Spencer
Salazar for creating the miniAudicle (along with Ge and others).
Thanks to Ananya Misra for creating TAPESTREA (with help
from other soundlab members). Thanks to Leevi Peltola,
Cumhur Erkut, and Vesa Välimäki for creating ClaPD, and
inviting me to co-author an IEEE paper on applause analysis/
synthesis.

10. REFERENCES

[1] Zhu X. and L. Wyse, “Sound Texture Modeling and Time-
Frequency LPC,” in Proc. 7th Intl. Conference on Digital
Audio Effects (DAFX), Naples, Italy, 2004.

[2] Dubnov, S., Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and
M. Werman, “Synthesizing sound textures through wavelet
tree learning,” IEEE Computer Graphics and
Applications, 22(4), 2002.

[3] P. Cook, "Physically Informed Sonic Modeling (PhISM):
Percussive Synthesis," Proceedings of the International
Computer Music Conference, Hong Kong, Sept. 1996.

[4] P. Cook, "Physically Informed Sonic Modeling (PhISM):
Synthesis of Percussive Sounds," Computer Music Journal,
21:3, 1997.

[5] P. Cook, "Toward Physically-Informed Parametric
Synthesis of Sound Effects," Invited Keynote Address,
IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, October, 1999.

[6] P. Cook, “Physically Informed Stochastic Modal Sound
Synthesis,” Invited paper presentation at the 141st meeting
of the Acoustical Society of America, Chicago, June 2001.

[7] P. Cook and G. Scavone, "The Synthesis ToolKit (STK),"
Proceedings of the International Computer Music
Conference, Beijing, October, 1999.

[8] G. Scavone and P. Cook, “Synthesis Toolkit in C++ (STK),”
Audio Anecdotes, Volume 2, K. Greenebaum and R. Barzel
Eds., A.K. Peters Press, 2004.

[9] S. Lakatos, P. Cook, and G. Scavone, "Selective Attention
to the Parameters of a Physically Informed Sonic Model,"
Acoustics Research Letters Online, Journal of the
Acoustical Society of America, May 2000.

[10] G. Scavone, S. Lakatos, and P. Cook, “Knowledge
acquisition by listeners in a source learning task using
physical models,” (Invited) 139th meeting of the Acoustical
Society of America, Atlanta, June, 2000.

[11] P. Cook, “Modeling Bill’s Gait: Analysis and Parametric
Synthesis of Walking Sounds,” Proceedings of the Audio
Engineering Society 22nd Conference on Virtual, Synthetic
and Entertainment Audio, Helsinki, Finland, June 2002.

[12] L. Peltola, “Analysis, Parametric Synthesis, and Control of
Hand Clapping Sounds,” Master’s Thesis, Helsinki
University of Technology, 2006.

[13] L. Peltola, C. Erkut, P. Cook and V. Välimäki, “Synthesis of
Hand Clapping Sounds,” IEEE Transactions on Speech,
Audio, and Language Processing, vol. 15, March 2007.

[14] A. Misra, P. Cook, and G. Wang, “A New Paradigm for
Sound Design,” Proceedings of the International Conference
on Digital Audio Effects (DAFX), Montreal 2006.

[15] A. Misra, P. Cook, and G. Wang, “TAPESTREA: Sound
Scene Modeling by Example,” Technical Sketch,
SIGGRAPH, the ACM Conference on Graphics and
Interactive Technologies, Boston, 2006.

[16] A. Misra, “Musical Tapestry: Re-Composing Natural
Sounds,” Proceedings of the International Computer Music
Conference,” Winner, Journal of New Music Research
Distinguished Paper Award, New Orleans, 2006.

[17] X. Serra, “A System for Sound Analysis/Transformation/
Synthesis based on a Deterministic plus Stochastic
Decomposition. PhD thesis, Stanford University, 1989.

[18] T. Verma and T. Meng. “An analysis/synthesis tool for
transient signals that allows a flexible sines+transients+
noise model for audio,” Proceedings of 1998 IEEE
International Conference on Acoustics, Speech, and
Signal Processing, 1989.

[19] B. Truax, “Composing with real-time granular sound,”
Perspectives of New Music 28(2), 1990.

[20] B. Truax, “Genres and techniques of soundscape
composition as developed at Simon Fraser University,”
Organised Sound 7(1), 2002.

[21] C. Roads, Microsound. Cambridge: MIT Press, 2002.
[22] G. Wang and P. Cook, "ChucK: A Concurrent, On-the-fly,

Audio Programming Language," Proceedings of the
International Computer Conference, Winner, Best
Presentation Award, Singapore, Oct. 2003.

[23] S. Salazar, G. Wang, and P. Cook, “miniAudicle and the
ChucK Shell: New Interfaces for ChucK Development and
Performance,” Proceedings of the Intlernational Computer
Music Conference, New Orleans, 2006.

ICAD-172

