INDIVIDUAL DIFFERENCES IN INTERPRETING AUDITORY
GRAPHS

Lisa M. Mauney
Sonification Lab
School of Psychology
Georgia Institute of Technology
654 Cherry Street
Atlanta, Georgia, USA 30332
kint16@yahoo.com

ABSTRACT

Very little research has been done on the role of individual
differences in the interpretation of auditory graphs. Research
with the visually impaired, musicians, and college students
point to interesting differences in the way sound is interpreted.
However, in order for auditory graphs to be successful, a more
thorough understanding of individual differences is needed.
This paper proposes a series of experiments that look at
cognitive abilities, musical abilities, and other demographics in
college students and the visually impaired. The author,
however, stresses the importance of collaborating with other
researchers to obtain data on other groups of people.

1. INTRODUCTION

1.1. Previous Studies

There has been little research in the area of individual
differences with respect to sonifications and auditory graphs.
Research with an auditory magnitude estimation task has
demonstrated that important differences in the interpretation of
auditory information arise within and between groups of
listeners [1-3]. Walker [2] found individual differences in
college students in the polarities of responses to data-to-sound
mappings. The polarity of a mapping describes how changes in
a display dimension signify changes in the data dimension. For
example, in a positive polarity mapping, an increase in the data
dimension (e.g., urgency) would be represented by an increase
in the display dimension (e.g., tempo). If the tempo decreases
with increasing urgency, then the respective mapping would be
classified as a negative mapping. Walker [2] found that in some
cases a majority of the listeners preferred a positive or negative
polarity and in other cases the polarities were split within the
data-to-display mappings. Siebenaler [1] and Walker and Lane
[3] found differences between groups of visually impaired and
sighted listeners. These two studies indicate that in some
situations visually impaired and sighted listeners respond with
similar polarities of data-to-display mappings, but in other cases
different polarities result. Individual differences in the
interpretation of auditory graphs were also found within the
visually impaired population, demonstrating the importance of
further inquiry into people with visual impairments. Neuhoff,
Knight, and Wayand [4] found differences in listeners’
perceptual and conceptual responses to pitch change. This study
indicates that listeners with more musical experience scale
frequency change differently from listeners with no musical
experience. Neuhoff et al. [4] also found that greater musical
expertise reduced the amount of errors in judging/labeling the
direction of the pitch change.

These findings of a few select types of individual
differences in interpreting auditory information have not been
consistent or replicated. Walker and Mauney [5] look at a
wider variety of individual differences and use a more
systematic approach to their investigation. These researchers
focused on cognitive abilities, musical abilities, and a variety of
demographics (age, gender, handedness) in their study of
individual differences in the auditory magnitude estimation task
mentioned previously. Walker and Mauney [5] used exploratory
statistics and found some support for cognitive abilities
affecting the interpretation of auditory graphs. Listeners with
better scores on certain cognitive abilities measures (working
memory capacity and spatial reasoning) performed more
consistently on the magnitude estimation task (R² values).
However, the slope of the data-to-display mappings did not
seem to be affected by cognitive abilities, musical abilities, and
demographic variables. These results are sporadic and not
entirely consistent, but are a starting point for a more thorough,
systematic study of individual differences in auditory graph
interpretation.

1.2. Task Analysis

Smith and Walker [6] performed a task analysis on determining
the value of a specific data point on a basic auditory graph.
According to Smith and Walker [6], this “point estimation” task
consists of the following perceptual and cognitive subtasks:
(1) listen to entire graph; (2) perform an interval
division task to determine the part of the sound
duration corresponding to the queried data point;
(3) recall the pitches perceived both at the
queried time and at the onset of the graph; (4)
compare one pitch to the other and estimate the
change in price represented by the difference…;
and lastly, (5) recall the value of the initial data
point, add or subtract the perceived change in
price, and report the value. (p.8)

The first subtask discussed by Smith and Walker [6] is related
to perceptual issues involved in hearing an auditory graph. The
second subtask can be linked to spatial abilities in hearing and
parsing the data set. The third subtask can be associated with
both pitch discrimination and working memory capacity. The
fourth subtask is also related to pitch discrimination. And lastly,
the fifth subtask is connected to working memory capacity. By
knowing what tasks are involved in interpreting an auditory

ICAD05-414
graph, the Sonification Lab at Georgia Tech proposes a series of studies to approach various relationships between variables in a more systematic way. This investigation will be based on what is required to perform the task rather than "fishing" for correlations.

1.3. Proposed Studies

The aim of our (i.e., Sonification Lab) proposed plan of research is to gather a larger number of visually impaired and sighted participants and focus on the attributes of these different populations that may result in how they perceive the auditory graphs. We plan to attack this problem using these general approaches: (1) study the relationship between working memory capacity, spatial reasoning, tempo discrimination, and pitch discrimination; (2) study the predictive power of the above measures in the interpretation of auditory graphs; (3) study the predictive power of the above-mentioned measures of individual differences through the manipulation of different types of auditory graphs and cognitive abilities measures; (4) study the predictive power of musical abilities in the interpretation of auditory graphs; and (5) study how differences in mental models of individuals with congenital blindness versus those with late-onset blindness affect the interpretation of auditory graphs.

In Experiment 1, we hypothesize that (1) working memory and spatial reasoning will be correlated, and (2) a high working memory capacity and high spatial reasoning will predict performance for individuals with good pitch and tempo discrimination. Georgia Tech undergraduates will complete a computerized Operation Span task (O-span, a measure of working memory capacity), a computerized Raven’s Progressive Matrices task (Raven’s, a measure of spatial reasoning), a pitch discrimination task, a tempo discrimination task, Edinburgh Handedness test, and a series of musical abilities and demographics questions. Analyses will include correlations between the all of the variables and a multiple hierarchical regression analyses to see how the covariates (O-span, Raven’s, handedness, musical abilities, demographics) predict performance on the dependent variables (tempo and pitch discrimination). Participants in Experiment 1 will then be called back to participate in Experiment 2, which involves the completion of an auditory point estimation task. For Experiment 2, we hypothesize that (1) good pitch and tempo discrimination will predict good performance on the auditory point estimation task, and (2) high working memory capacity and high spatial reasoning will predict good performance on the auditory point estimation task. The returning participants will complete an auditory point estimation task (see [6-8]) representing the changing stock market prices in a day of trading—participants will indicate the price of the stock at different times of the trading day. Performance in this task will be measured by Root Mean Squared (RMS) error (in dollars) and will be used as the dependent variable in a hierarchical regression analysis, where the covariates are the performance and demographic scores from Experiment 1 (O-span, Raven’s, pitch and tempo discrimination, handedness, musical abilities, demographics).

If Experiment 1 and Experiment 2 show that O-span, Raven’s, pitch discrimination, and tempo discrimination are highly correlated and are good measures of performance on an auditory point estimation task, then in Experiment 3 we will investigate how predictive these measures are on other auditory graphing tasks and new participants. In Experiment 3, we plan to investigate auditory measures of cognitive abilities tests as predictors of performance in sighted college students as well as blind/visually impaired listeners. Tasks that differ in the presentation of the data (i.e., discrete versus continuous data points) will also be explored, since we hypothesize that tempo discrimination will predict performance for auditory graphs that use discrete data points better than it will predict graphs that use continuous data points. Experiment 4 will investigate more comprehensive and thorough musical abilities tests to see if musical abilities do predict performance on auditory graphing tasks. Lastly, in Experiment 5, we hypothesize that, due to differences in mental models, (1) individuals who have late onset blindness will respond in a similar manner to sighted individuals in their performance on auditory graphing tasks, and (2) people with congenital blindness will respond in a different manner to sighted and late onset blindness individuals. Specifically, performance of blind/visually impaired participants will be compared to sighted participants, using at least one of the auditory graphing tasks that has been found to be a reliable and valid measure of auditory graph interpretation in the first four experiments. The differing levels of visual impairment and length of the impairment (i.e., congenital versus late-onset blindness) will be looked at specifically to determine if a more visual mental model has an impact on how a listener interprets an auditory graph.

Most, although not all, research to date has involved sighted undergraduates, which limits the generality of findings. The proposed plan of research would benefit from collecting data from additional populations—college students from different universities, members of the general community, people with visual impairments, and people from other countries and cultures. In order for research on individual differences in interpreting auditory graphs to be successful, collaboration amongst the auditory graphing community is essential.

2. CONCLUSIONS

Research, so far, in individual differences has shown the following: (1) differences between sighted and visually impaired listeners in auditory magnitude estimation tasks; (2) musicians and non-musicians differ in pitch change judgments; and (3) cognitive abilities seem to predict responses in auditory magnitude estimation tasks. However, more research in individual differences needs to be performed to confirm the above findings.

Smith and Walker [6] discuss a task analysis on what is required to make a judgment about an auditory graph. This task analysis shows the need to systematically study auditory perception, pitch discrimination, working memory capacity, and spatial reasoning. In accordance with the results of the task analysis, the author proposes a series of experiments that will study pitch and tempo discrimination, cognitive and musical abilities, and various demographics and their relationship with auditory graphs. The author proposes to use Georgia Tech undergraduates and people with visual impairments in this series of studies. However, collaboration with the auditory graphing community is urged, since a more diverse subject pool is critical for a thorough understanding of individual differences.

One practical implication of the proposed research is finding characteristics of listeners that predict how they interpret auditory information. We could gain knowledge of how to tailor or create auditory graphs specific for the user. Another practical implication of the proposed plan of research
is gaining the ability to choose an operator more likely to interpret auditory graphs (e.g., multi-modal watch stations).

3. REFERENCES


