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ABSTRACT

The field of Auditory Data Representation, which addresses the
representation of quantitative data through the use of auditory,
rather than visual, displays, has seen considerable activity in the
last twenty years. On the occasion of the first Symposium on
Auditory Graphs it is well to consider the roots of this field.
This paper presents a brief history of the field, leading up to the
beginning of the 1980s, and accompanies a demonstration of a
multivariate time series representation developed by the author
and his colleagues in 1980.

1. INTRODUCTION

Auditory Data Representation is a term used to reflect the use of
sound to display quantitative information. The present work
attempts to document the early history of this field, and
accompanies a demonstration of a combined auditory/visual
display of multivariate time series data developed in 1980 by
the author and his colleagues. Much of this paper is extracted
with modification from an unpublished thesis written by the
author [1].

2. EARLY EXPLORATION

One of the earliest investigations of quantitative auditory
displays to be found in the open literature was conducted by
Pollack and Ficks [2], in the wake of the birth of information
theory by Shannon [3], and was primarily concerned with
evaluating the information transmission properties of auditory
stimuli. Although Pollack and Ficks did not allude to
applications of auditory displays, they did evaluate two different
mappings of multidimensional data onto the parameters of
sound. In the first display type, they presented the subject with a
tone and noise in alternation, and represented eight variables as
binary parameters:

1. Frequency range of the noise (100-500 or 5000-8000
Hz)
intensity of the noise (40 or 105 db)
frequency of the tone (100 or 6000 Hz)
intensity of the tone (40 or 105 db)
alternation rate (0.4 or 4.0 interruptions per second)
temporal ratio of tone to noise (10% or 90%)
total duration of the display (5 or 17 seconds)
apparent direction of origination of the display (-90 or
+90 degrees)

In the second display type, the noise-related parameters of
the first type were excluded, leaving an interrupted tone
described by the last six parameters. These parameters were
assigned either two, three, or five levels, with the limits held
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constant for all variations, instead of only two as in the first
display type.

Using these two display types, the second with its three
variations, Pollack and Ficks [2] measured the information
transmitted to subjects as the sum of the number of bits in each
correctly identified dimensional level. Their results indicate that
multidimensional displays, that is displays using multiple
parameters of sound, in general outperformed unidimensional
displays measured elsewhere, and that subdivision of display
dimensions into finer levels does not improve information
transmission as much as increasing the number of display
dimensions does. This result will very likely have a great
influence on the nature of displays used for Auditory Data
Representation.

Another early example of Auditory Data Representation
experimentation was published by Speeth [4], who was
searching for improved ways to discriminate earthquakes from
underground bomb blasts based upon seismic measurements.
Given the extremely complex vibration patterns measured by
the seismometer, this task was apparently very difficult to
perform using visual plots of the data. So Speeth sped up the
playback of data recorded by seismometers to place the
resultant frequencies in the audible range, and then set human
subjects to the task of determining whether the stimulus was a
bomb blast or an earthquake, after an appropriate training
program.

In Speeth's [4] experiment, subjects were able to correctly
classify seismic records as either bomb blasts or earthquakes for
over 90% of the trials. Furthermore, because of the time-
compression required to bring the seismic signals into the
audible range, an analyst could review twenty-fours hours worth
of data in about five minutes, making the technique extremely
attractive as a monitoring and surveillance tool.

Chambers, Mathews, and Moore [5] also investigated the
use of sound to represent quantitative data, this time using
multiple parameters of sound to encode those dimensions of
multidimensional data which were not displayed on a
conventional scatter plot. Their auditory display was based on
three parameters:

1. Frequency (150-700 Hz, quantized chromatically)

2. Spectral content (an additive formant frequency, 50-
8000 Hz, also chromatic)

3. Amplitude modulation (amplitude of 15 Hz modulator
proportional to data)

Without formal experimentation, they found that their
auditorily-enhanced scatter plot display system promoted the
classification of multivariate data.
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3. BATTLE SONGS AND IRISES

A more comprehensive study of Auditory Data Representation
was published by Bly [6] in her thesis, wherein she evaluated
auditory displays for three classes of data: multivariate,
logarithmic, and time-varying.

In considering multivariate data, Bly [6] was interested
specifically in discriminating non-ordered sets of multivariate
data points, and in attempting to classify an unknown data point
as belonging either to one set or the other. In her multivariate-
display system, one data point (either an unknown or a
representative of a set) would be sounded at a time, with its
various dimensions (up to seven) mapped onto the following
parameters of sound:

1. Frequency (48 chromatic levels, from 130 to 2000
Hz);

2. Intensity (12 levels from "very soft to very loud");

Duration (201 levels from 50 to 1050 msec);

4. Fundamental waveshape (128 levels from pure
sinusoid to random noise);

5. Attack envelope (15 levels from "long attack" to
constant amplitude);

6. Fifth harmonic (128 levels from pure sinusoid to
random noise added to the fundamental);

7. and ninth harmonic (128 levels from pure sinusoid to
random noise added to the fundamental).

One data set to which she applied her auditory display
technique was the Iris data set of Fisher [7]. These data
characterize samples of three different species of flower using
four measurements per plant (sepal length, sepal width, petal
length, and petal width). Although one species is easily
distinguishable, the other two have some overlap with each
other, and thus present a problem to the analyst attempting to
classify an individual plant as belonging to one species or the
other. Displaying the 4-dimensional data auditorily, Bly [6]
found that most observers could correctly classify all but one or
two of the samples.

In representing logarithmic data, Bly [6] was motivated by
the logarithmic relationship between frequency and pitch, and
therefore encoded the exponential variable in pure frequency
without conversion to a chromatic scale. She found that the
resulting displays were useful in highlighting features in seismic
records of earthquakes.

Finally, Bly [6] represented time-varying multivariate data
with the frequency and intensity of multiple tones. To help
distinguish the tones, different waveforms were used for each,
though waveform itself did not correspond to a dimension of the
data. She applied this technique to simulated, two-sided military
battles by assigning one tone (sinusoidal or noisy) to each side.
The frequency of each tone represented the number of units that
side had at the front, and the intensity represented the number of
units in transit to the front. In the resulting "battle songs"
listeners were able to distinguish battles which had the same
outcome but which evolved differently, although they
apparently had difficulty tracking the tones for each side
independently.

To validate her approach to Auditory Data Representation,
Bly [6] conducted a series of formal experiments on
multivariate data displays. The experiments considered two 6-
dimensional data sets which differed by translation, scaling, or
correlation, and tried sound only, graphics only, and bimodal
displays. She also experimented with changes in the mapping of
data values to sound parameters and changes in training
methods. In all experiments, the subjects were classifying an
unknown test sample as belonging either to one set or the other,
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which sets differed in a well-defined way made known to the
subjects beforehand by unrestricted training.

The most telling experiment used data sets which were
completely non-overlapping only in six-space, thus representing
a clear multivariate discrimination problem. Bly [6] compared
her auditory display scheme to a visual scatterplot, and also to a
combined (redundant) auditory/visual representation. The
results of this experiment indicate that the auditory display was
at least as effective as the visual display, and that the combined
display outperformed them both.

4. ACOUSTIC CHROMATOGRAPHY

Morrison and Lunney [8], interested in presenting analytical
chemistry data to visually impaired students, developed a
somewhat more elaborate scheme for representing infrared
spectral data in sound. In one of their representations, the pitch
of a tone is proportional to the frequency location of the infrared
peak it represents. These are first played sequentially in
descending pitch order, with note durations proportional to the
intensity of the represented infrared peak, producing a
descending arpeggio of varying member note intensity. Then
the same data are played sequentially in descending order of
peak intensity with equal note durations. Finally, a chord
(usually highly-dissonant) is formed by sounding all of the
peak-notes at once with equal intensity. They informally found
that identical matches were reliably made from a set of spectra
produced by approximately twelve organic compounds.
Similarly Yeung [9], in preparing an audible display for
experimental data from analytical chemistry, sought auditory
parameters exhibiting continuity in scaling and relative
independence from each other. His parameters were
1. Frequency (two dimensions, 100-1000 and 1000-
10,000 Hz, logarithmically indexed)

2. Intensity

3.  Damping

4. Direction (left to right)
5. Duration/Repetition

6. Rest

His display consisted of data vectors, each dimension of
which corresponded to the detected levels of various metals in a
given sample, with one vector per sample. The analysis task
involved classifying a given vector as belonging to one of four
sets, after having been trained with vectors from those four sets.
Although Yeung did not compare the performance of his
subjects using the auditory display with that of any other
display, he noted that all of his subjects achieved the 98%
correct classification rate after (at most) two training sessions.

5. ECONOMIC INDICATORS

Mezrich, Frysinger, and Slivjanovski [10] developed a dynamic
representation employing both auditory and visual components
for multivariate time-series displays. Such data play an
extremely important role in human decision making.

Time-series data are best characterized as discrete functions
of an ordered independent variable which is often, though not
always, a quantized representation of time. Multivariate time-
series are multiple functions of the same independent variable.
These functions may be independent, correlated, or exhibit
some other relationship or pattern.

Time-series data are often displayed visually in x-y plots,
with the multiple dimensions either overlaid, stacked, or
displayed on separate axes. Such visual displays are almost
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always static; all of the available data are drawn on the display
at once and then examined by the analyst.

The dynamic representation developed by Mezrich et al.
[10] represents multivariate time-series redundantly, employing
both auditory and visual components. Although this
representation was intended for oil well log data, a type of
multivariate time-series common to the oil exploration industry,
the proprietary nature of such data made it difficult to gain
access to meaningful examples. Thus, they turned to economic
indicators, which are statistically similar to well logs, and are
generally in the public domain.

Individual economic indicators are univariate time-series
describing the temporal fluctuations of such things as car sales
and housing starts. They are not usually of interest individually,
but when combined they form a window onto the state of the
economy. The difficulty is that there are no widely-accepted
models for the interactions among these indicators; in practice
they are simply co-plotted on a visual display and analyzed for
"interesting behavior". Unfortunately, the visual displays are too
complex for meaningful visual inspection, especially when the
number of indicators grows. As a result, the indicators are often
grouped by weighted linear combination into a single index,
which is then used as an economic predictor. The problem with
this is that, lacking well-founded models of interaction among
the indicators, the weighted combinations have questionable
validity and tend to throw away information which was
available in the individual time-series.

The representation developed by Mezrich et al. [10] allows
the analyst to "view" (i.e. hear and see) the unperturbed
indicators without experiencing "sensory overload", and further
permits interaction with the data display which was not
previously available. In their scheme, the analyst is confronted
at any moment with one multivariate sample from the time-
series, rather than the whole data set. These samples are
displayed in succession, forming "frames" of data analogous to
frames in a movie. Each frame consists of a collection of visual
objects whose position and size correspond to the dependent
variable values, and a collection of simultaneously-sounding
musical notes whose frequencies correspond to the same
dependent variable values.

The auditory representation used for these multivariate time-
series assigned one "voice" to each variable. The chromatic
frequency of the voice was proportional to the value of each
variable, and all other parameters (such as intensity and attack)
were held constant. Because the voices for all variables used the
same range of frequencies, they could overlap as they
progressed in succession. The default condition assigned the
same waveform to all voices, so that they were essentially
indistinguishable; however, the analyst could interactively
"enhance" one or more variables by assigning its voice a
brighter waveform (i.e. one with more harmonics), "mute" a
variable by assigning its voice a pure sinusoidal waveform, or
simply remove a variable from the display altogether. The
homogeneous assignment seemed to be effective at promoting
global pattern recognition, while the interactive enhancement
facility permitted local scrutiny at the analyst's discretion,
although this observation has never been tested formally.

The temporal nature of the representation permitted novel
interactions with the display. For example, the analyst could
"play" the data either forward or backward in the independent
variable, providing two distinct (though not independent)
"views" of the data. Furthermore, sub-series could be marked,
saved, and played in temporal juxtaposition with each other to
facilitate comparisons.

To formally evaluate the effectiveness of this bimodal data
representation, Mezrich et al. [10] compared it to three

commonly-used static visual representations, manipulating the
degree of correlation of the randomly generated stimulus time-
series, and measuring the psychophysical threshold of
correlation detection for each display technique. A secondary
manipulation was the number of samples in the stimulus time-
series.

The results of their experiment indicated that the dynamic
auditory/visual display outperforms the static visual displays
with one notable exception. When a visual display was
constructed of overlaid time series plots, it was outperformed by
the dynamic display only for small sample sizes (i.e. series
lengths), and became essentially equivalent to the dynamic
display for longer series. Mezrich et al. [10] conjectured that
this result reflects the fact that both the dynamic display and the
overlaid static display facilitate global pattern recognition,
while the stacked and separate-axis displays required local
pattern recognition by feature scrutiny. Within the realm of
global pattern recognition, the dynamic display allowed the
subject to detect correlation with fewer points than were
required when using the overlaid display.

In subsequent experiments, Frysinger [1] further examined
the performance implications of different data set sizes, as well
as different detection tasks.

6. CONCLUSIONS

The foregoing illustrates two important points about the field of
Auditory Data Representation. The first of these is that the idea
of displaying data through sound has been with us for quite
some time. The second, though, is that relatively little progress
was made in the field until the 1980s and early 1990s (e.g. when
the International Conference on Auditory Display series
commenced). There is at least one technological reason for this,
in that ready access to digital sound generation technology
didn’t become available until the advent of sound generation
cards for personal computers in the mid-1980s, as well as the
development of the MIDI standard.

While Auditory Data Representation is still not a standard
feature of commercial spreadsheet packages, the historical
foundation suggests that such an outcome is possible. What is
lacking is scientifically-informed guidance in the use of sounds
for data representation. While visual displays have been used
for centuries without a good psychophysical framework,
auditory displays are somewhat less intuitive, and the field will
therefore benefit greatly from rigorous and accessible research.
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