
Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005 

 ICAD05-256

SIFT: SONIFICATION INTEGRABLE FLEXIBLE TOOLKIT 

 J.W. Bruce and N.T. Palmer  

Microsystems Prototyping Laboratory 
Department of Electrical and Computer Engineering 

Mississippi State University 
Mississippi State, MS 39762-9571 USA 

 
jwbruce@ece.msstate.edu 

 
ABSTRACT 

This paper describes work-in-progress on a platform-
independent toolkit for sonification of scientific data. The data 
being displayed and the sonification control information can be 
provided in real-time and distributed over a wide area via 
Ethernet. The toolkit allows the designer to process, scale, and 
map data to a wide variety of sonification parameters and 
methods. Sonification processing and control commands are 
stored in standard XML syntax files and can be applied or 
modified in real-time. The toolkit described here is easily added 
to existing visualization applications and can be quickly 
expanded to use new data formats and sonification modalities. 
Early results of interactive auditory and visual analysis of an 
example domain are described, and extensive user tests are 
being planned. 

1. INTRODUCTION 

Data sonification is becoming a more widely acceptable way to 
overcome the limitations of data visualization. Many research 
fields have models and experiments that produce enormous 
amounts of data with great complexity. It is well known that 
auditory display of data, especially in conjunction with existing 
well-proven visualization techniques, can be effective, although 
sonification and related areas require much more study [1][2]. 
The sonification community has demonstrated promising results 
toward 

• the interpretation of highly dimensional data; 
• the interpretation of data when visualization is 

difficult to understand, 
• revealing trends and finding patterns in long term 

dynamic temporal data. 
With reporting of these successes, visualization researchers 

are increasingly looking toward auditory cues to enhance the 
efficacy of data visualization and interpretation. However, the 
installed hardware and software infrastructure to support the 
high performance computing of modeling and visualization is 
expensive and entrenched.  For example, CAVE (Computer 
Automatic Virtual Environment) equipment can cost 
$100,000.00 for a simple setup.  Also, ultra high resolution 
displays, which are gaining popularity, can cost $20,000.00 for 
the display and require non-standard video interface hardware.  
Visualization researchers need a flexible, preferably platform-
independent, easy-to-use sonification toolkit that can be 
integrated into existing visualization applications with minimal 
modification. 

This paper describes a toolkit that is being developed at 
Mississippi State University, USA, which supports sonification 
and auditory display of both simulated and experimental data in 

conjunction with visualization applications already in 
development or use. The toolkit is platform independent and 
has a wide variety of data input and sonification data output 
capabilities. 

2. BACKGROUND 

SIFT shares similar features and goals with other toolkits under 
development by the Sonification community. Lodha's work [3]-
[5] with the Listen, MUSE, and MUSART toolkits provides an 
impressive foundation for what a toolkit should do. Many of the 
audio parameters utilized in MUSART are included as 
mappings in SIFT, such as pitch, timbre, loudness, and 
duration. SIFT attempts to utilize these mappings in a multi-
platform package. 

Previous work using platform-independent environments 
like Java greatly inspired our approach to SIFT. Upson’s work 
on SoundGrid [6] uses the Java sound and graphics capabilities 
to create a usable (and fun) application for sonification 
experimentation. SoundGrid’s educational objective during 
design resulted in an easy-to-use tool with real-time 
interactivity. However, SoundGrid is not suitable for 
sonification tasks required for research applications.  Namely, it 
is difficult to import large or dynamic datasets using 
SoundGrid’s current spreadsheet-style data entry.  Walker and 
Cothran's Sonification Sandbox [7] is another excellent 
example of a multi-platform sonification application. The 
Sonification Sandbox targets research of auditory display for 
the blind, science and mathematics education, and data 
exploration.  It also has sophisticated audio parameter mapping 
capabilities. The application’s ability to import a static dataset 
via spreadsheet is extremely useful for experimenting with the 
effectiveness of various sonification techniques and parameters. 
However, because of this static data input functionality, the 
Sonification Sandbox cannot be integrated into existing 
applications, such as visualization or real-time models.  The 
current version has no external interfacing capabilities. 

Finally, SONART [8] is a very powerful sonification 
toolkit, especially for research into the mapping of scientific 
data onto synthesis models and algorithm parameters. However, 
its integration with applications not specifically designed for 
Sonification seems difficult.  We are unable to locate a version 
of SONART for testing at the time of writting.  Other projects, 
such as Pauletto and Hunt's work with PD [9] which support 
easily configurable audio mappings and real-time manipulation 
also influenced the design of SIFT. Like these tools, SIFT 
strives to allow users to rapidly experiment with configurations 
and mappings in real-time while sonifying data. 



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005 

 ICAD05-257

3. DESIGN 

SIFT is designed to be platform-independent, flexible, modular, 
and easily integrated into existing visualization applications that 
require sonification abilities. Since many of the sponsors’ 
existing visualization applications have widely varying 
architectures, are written in many different languages, and run 
on different hardware platforms, SIFT was must support a wide 
range of environments. 

Much of the design effort is focused on flexibility. 
Researchers are more likely to utilize elements of sonification if 
there are tools available for the systems they already operate. 
Hence, it is our goal to be as platform and architecture 
independent as possible. Java was chosen for the core toolkit 
kernel because of its inherent platform independence. Java 
Virtual Machines are available for most major platforms used in 
industry and academia, including Windows, Mac OS X, and 
Linux. In addition, the SIFT project’s source code will be made 
publicly available after alpha testing so that researchers can 
tailor the toolkit to their needs or add to its functionality.  

Much effort is also taken to ensure the flexibility of the 
toolkits’ components. At the heart of the toolkit is the 
sonification kernel. As shown in Figure 1, the kernel has four 
main components: a control interface, a data interface, a 
processing chain, and a synthesizer interface. Each of these 
components are independent from each other and can be 
changed or customized to meet specific user needs.  

System control information arrives via the control interface. 
The control interface translates valid inputs into state control 
messages for the kernel. Inputs can come from a local 
interactive console, remote shell, or separate application 
(through TCP/IP, for example). System control information 
depends on the format and method of data retrieval and/or 
generation. For example, if the sonification kernel has access to 
a local copy of the data being sonified, control information can 
be sent to the SIFT kernel to access the appropriate data 
records. However, if the sonification data is being computed at 
runtime, the system control interface can receive model control 
parameters and independent variables to input into the 
computational models. Another option is that computational 
data is being computed at runtime by another system and 
sonification data is transmitted directly to the SIFT kernel for 

sonification. The control interface is very flexible and easily 
adjusted to support interactive, real-time or playback models. 

The data interface abstracts dataset information away from 
a particular data format allowing researchers to use their 
current, possibly proprietary, data formats. The data interface 
receives the requests from the control interface and acquires the 
needed data to forward to the processing chain. Data is acquired 
by accessing data records from local data storage, computing 
data from models and algorithms, or simply passing external 
runtime data through. Extensions for custom dataset formats 
can easily be incorporated into the system allowing extreme 
flexibility in data access. For example, an extension for the data 
interface to acquire information from a database and combine it 
with simulation data and sensor data could be written easily. 

The processing chain controls the mapping of stream data 
values to parameters that will be applied to sounds by the 
synthesizer. A set of virtual sound-objects are positioned in the 
dataset. When the listener queries the dataset, or “listens”, the 
data at each virtual sound-object is mapped and synthesized.  
Each sound-object can be moved around independently in the 
dataset sending control commands from the application making 
use of SIFT.  The mapping is performed by a chain of 
processing blocks that link a data element to a sound parameter 
of a virtual sound object. For example, the SIFT application 
may have a local data store of climate sensor readings. At 
regular intervals, system control information requests that the 
data interface retrieve hourly average wind speed data from the 
data store. The processing block applies several transformations 
to map the hourly average wind speed to sonification 
parameters, like pitch. 

Processing blocks attempt to transform the data into a 
meaningful value before assigning it to a sound parameter. 
Mappings and processing chains are configurable at runtime 
using configuration files. Processing configuration files are 
stored in standard XML syntax. Processing blocks can perform 
mapping or transformation functions and simple pattern 
matching. The object structure of the processing blocks means 
that new processing functions are easily created. Some 
examples of currently existing processing block elements are 

• transformation blocks (invert, scale, shift, normalize, 
constant, convert to scale) 

• conditional blocks (pass-through, pass-on-repeat, 
pass-on-match) 

C o n t r o l In te r fa c e

T h is  o b je c t  r e tu r n s  th e  c u r r e n t  
s ta te  o f  a n y  v a r ia b le  th a t  is  
m a p p e d  to  a n  a u d io  
p a r a m e te r .

D a ta  In te r fa c e
P ro c e s s in g  C h a in

V a r ia b le 1            V a r ia b le 2          V a r ia b le 3

P la y  n o te  1

N o r m a liz e  
P i tc h

N o r m a liz e  
V o lu m e

M a p  to  
P i tc h  2

M a p  to  P i tc h  1

C o n n e c ts  to  c o n s o le  a n d /o r  
T C P /IP  s o c k e t .

S y n th e s iz e r  In te r f a c e T h is  o b je c t  s y n th e s iz e s  th e  a u d io  d a ta  
u s in g  th e  c u r r e n t  s y n th e s iz e r  e x te n s io n  
( M ID I ,  O p e n A L ,  S O N A R T , P D ,  e tc . )

N o r m a l iz e  
P itc h

In v e r t  V a lu e

M a p  to  
V o lu m e  1

P a s s  o n  
V a lu e  R e p e a t

A u d io  H a rd w a re
P C  s o u n d  c a r d  o r  M ID I  
s y n th e s iz e r

C o n t r o l In te r fa c e

T h is  o b je c t  r e tu r n s  th e  c u r r e n t  
s ta te  o f  a n y  v a r ia b le  th a t  is  
m a p p e d  to  a n  a u d io  
p a r a m e te r .

D a ta  In te r fa c e
P ro c e s s in g  C h a in

V a r ia b le 1            V a r ia b le 2          V a r ia b le 3

P la y  n o te  1

N o r m a liz e  
P i tc h

N o r m a liz e  
V o lu m e

M a p  to  
P i tc h  2

M a p  to  P i tc h  1

C o n n e c ts  to  c o n s o le  a n d /o r  
T C P /IP  s o c k e t .

S y n th e s iz e r  In te r f a c e T h is  o b je c t  s y n th e s iz e s  th e  a u d io  d a ta  
u s in g  th e  c u r r e n t  s y n th e s iz e r  e x te n s io n  
( M ID I ,  O p e n A L ,  S O N A R T , P D ,  e tc . )

N o r m a l iz e  
P itc h

In v e r t  V a lu e

M a p  to  
V o lu m e  1

P a s s  o n  
V a lu e  R e p e a t

A u d io  H a rd w a re
P C  s o u n d  c a r d  o r  M ID I  
s y n th e s iz e r

Figure 1. SIFT kernel structure (data flow example) 



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005 

 ICAD05-258

Finally, the synthesizer interface provides a flexible mechanism 
for producing the actual sounds heard by users. A synthesizer 
can be chosen to reflect the needs of a particular project and 
new synthesizers can be written if needed. Sound descriptions 
are generic with each synthesis module responsible for 
translation to specific sounds. Examples of some existing 
synthesis commands are 

• audio parameters (pitch, volume, timbre, duration) 
• control parameters (start sound, stop sound, sound 

duration, pitch change) 
Currently, SIFT has implemented a relatively full-featured 

MIDI translation module. MIDI synthesis can be done by 
internal computer hardware, Java software synthesis, or 
transmitted over standard MIDI ports. The emphasis is on MIDI 
output for now because of the ease of parameter mapping and 
the low bandwidth. However, other interfaces such as OpenAL, 
PD, and a proprietary network format are being developed. 
Support for most existing synthesis toolkits in the sonification 
community can be easily added later. 

3.1. Integration 

The second factor driving the design, after the need for 
flexibility, is ease of integration. Currently, the sonification 
toolkit is being used to determine the effects of adding audio 
components to existing visualization applications. A library is 
available in C++ that allows researchers to control the 
sonification toolkit from within their applications. To connect 
with and control the sonification kernel, the application should 
be linked against this library and make calls to the functions 
made available through the library. Ultimately, the user 
interface of the original application remains familiar while new 
sonification features are easily added. 

The toolkit library works by first establishing a socket 
connection to the sonification kernel, which acts as a server, 
over a TCP/IP network and then streaming control commands 
from the user. Commands such as “load dataset”, “move 
absolute”, and “listen” are available to the visualization 
application from the provided library. Sonification details, such 
as how data are mapped to audio parameters, are specified 
using the toolkit’s configuration files. Integration is simplified 
because only commands with intuitive visualization analogs, 
such as moving to a point in the dataset, need to be sent by the 

visualization application. Figure 2 shows the relationship 
between the sonification toolkit and the application utilizing it. 
The sonification kernel acts as a server responding to a client 
application’s commands. 

3.2. Interactivity 

A major goal of the sonification toolkit is to facilitate 
interactive sonification of data. Interactive sonification allows 
researchers to readily experiment with parameter mappings and 
transforms. This allows for immersion into the data being 
studied and provides an exploratory mechanism for the dataset. 
Researchers can maneuver through a data set, stopping to 
explore interesting sounding areas. Two particular aspects of 
the design encourage interactivity. 

First, the data and control interfaces are self-contained 
modules that act as interfaces to the system. The data interface, 
for example, can fetch data from a static file, generate real-time 
data based on formulae, or use some combination of the two. 
Also, the control interface is in essence an event handler for 
real-time events from the application utilizing the toolkit.  

Second, data is dynamically mapped to audio parameters by 
the processing chains. The mappings can be modified both 
before and during sonification, allowing for rapid 
experimentation during simulation.  

3.3. Sonification Features 

Several sonification features are available to researchers using 
the sonification toolkit. Data can be mapped to the pitch, 
volume, timbre, duration, or balance of a virtual sound-emitting 
object positioned around a virtual listener. There can be 
multiple virtual sound objects around the virtual listener. The 
synthesizer interface plays the sound as the virtual listener 
would hear it.  

Data can be processed in many ways before becoming a 
sound parameter. Simple transforms such as scaling it by a 
constant factor, normalizing it to a range, or inverting its values 
are available. More complicated processing, such as vector 
magnitude calculation, is available for certain datasets. The data 
is processed much in the same way that audio remastering 
applications process audio streams. An input and output are 
specified along with 0 to n processing blocks in between. The 

D ata SourceSonifica tion Toolset 
L ibrary 
Sonification Toolset L ibrary 

C onta ins m ethods to connect to  the 
sonification kerne l.

V isualization App

Linked against the sonification 
lib rary, th is app now  controls  the 
sonification kerne l.

Sonification C onfiguration F ile

Sonification Toolset Kernel 

N etwork Interface

Produces audio based on the 
m appings in the config. file  between 
data and audio param eters.

S tate is controlled by the 
V isualization application 

C ontro ls the m appings betw een 
audio param eters and data values.Both applications share 

the data files.

D ata SourceSonifica tion Toolset 
L ibrary 
Sonification Toolset L ibrary 

C onta ins m ethods to connect to  the 
sonification kerne l.

V isualization App

Linked against the sonification 
lib rary, th is app now  controls  the 
sonification kerne l.

Sonification C onfiguration F ile

Sonification Toolset Kernel 

N etwork Interface

Produces audio based on the 
m appings in the config. file  between 
data and audio param eters.

S tate is controlled by the 
V isualization application 

C ontro ls the m appings betw een 
audio param eters and data values.Both applications share 

the data files.

Figure 2. Example configuration of SIFT with existing visualization application 



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005 

 ICAD05-259

input comes from a tuple, or collection of data values, of the 
dataset at the current index of the virtual sound-object. The 
output is then mapped to a parameter of that same virtual sound 
emitting object. Outputs can also be mapped to control 
parameters of the sound object, such as “start emitting sound”.  

4. EXAMPLE  

In collaboration between visualization group in Mississippi 
State University’s GeoResources Institute and researchers with 
the U.S. Army Corps of Engineers, the sonification toolkit is 
helping researchers study oceanographic data sets. Ocean 
current data from a 2001 study in the Gulf of Mexico is being 
concurrently visualized and sonified in an attempt to understand 
how the two data representation methods can work together to 
reveal information. 

The visualization application was developed for previous 
research, so the main work was integrating the sonification 
toolkit. First the visualization application’s source code had to 
be modified to incorporate the SIFT initialization and 
communication routines. Basically, a socket connection is 
established at startup and a move command is sent whenever 
the mouse moves from one data point into another. To perform 
the experiment, the sonification kernel is started in listening 
mode on a Linux based test machine acting as a server. This 
sonification server also loads the dataset used in the 
visualization application that was modified above. Next, the 
visualization application is started on the same machine as the 
sonification kernel. The visualization application connects to 
the running sonification kernel and starts sending events as the 
mouse moves from data point to data point.  

At this point, researchers are free to experiment with 
various mappings between these data points and audio 
parameters. An example configuration maps water current flow 
direction to pan (left and right) and triggers a “listen” event 

every time the mouse moves over a new data point. This allows 
researchers to extract directional information about the data 
while viewing more general information such as water current 
speed distributions. Figure 3 shows a screenshot of the 
sonification kernel’s console output and the visualization 
application displaying a “wide view” of the data set.  

5. CONCLUSIONS 

This paper has described the first prototype of the Sonification 
Integrative Flexible Toolkit (SIFT) along with one of its initial 
uses in an oceanographic current visualization model. SIFT is 
easily incorporated into existing applications and supports local 
and remote data storage and real-time data calculation. SIFT 
implements an extendable synthesis interface at the backend, 
and is readily configured to use almost all sound synthesis 
methods available commercially and in the research 
community. 
Much work remains to be done on the processing chain 
interface. Namely, a graphical interface for configuring audio 
parameter mapping is to be implemented.  

Also, the synthesizer interface will be improved to provide 
a more robust set of mappings, such as register, thickness, and 
loudness. Another area to be improved is the data interface. 
Currently, data contains any number of values.  However, the 
initial data access scheme assume that data is located by a four 
dimensional tuple (x, y, z, t). Most spatial and temporal data 
sets fit nicely into this indexing scheme but some datasets will 
not; therefore, it will be replaced with a more generalized 
indexing scheme in the future. 

6. ACKNOWLEDGMENTS 

The authors would like to acknowledge the support and 
guidance of Professor Robert Moorhead at Mississippi State 
University and Professor Cynthia Ford at Jackson State 
University. The authors are grateful for the assistance of Joel 
Martin during the visualization application integration process. 

This work has been supported, in part, by the High-
Performance Computing and Visualization Initiative program 
funded by the U.S. Army Corps of Engineers. 

7. REFERENCES 

[1] Kramer, G., et al, “Sonification Report: Status of the Field 
and Research Agenda,” National Science Foundation, 
1997. 

[2] Hunt, A. and Hermann, T., “The importance of interaction 
in sonification,” Proc. ICAD, Sydney, Australia, 2004. 

[3] Wilson, C.M. and Lodha, S.K., “Listen: A data 
sonification toolkit,” Proc. ICAD, Palo Alto, USA, 1996. 

[4] Lodha, S.K., Beahan, J., Heppe, T, Joseph, A.J., and Zne-
Ulman, B., “MUSE: A musical data sonification toolkit,” 
Proc. ICAD, Palo Alto, USA, 1997. 

[5] Joseph, A.J. and Lodha, S.K. "MUSART: Musical Audio 
Transfer Function Real-Time Toolkit,” Proc. ICAD, 
Kyoto, Japan 2002. 

[6] Upson, R, “Educational sonification exercises: Pathways 
for mathematics and musical achievement,” Proc. ICAD, 
Kyoto, Japan, 2002. 

[7] Walker, B. and J.T. Cothran, “Sonification Sandbox: A 
graphical toolkit for auditory graphs,” Proc. ICAD, 
Boston, USA, 2003. 

[8] Ben-Tal, O, Berger, J., Cook, B., Daniels, M., Scavone, G. 
and Cook, P., “SONART: The Sonification Application 
Research Toolbox,” Proc. ICAD, Kyoto, Japan, 2002. 

[9] S. Pauletto and A. Hunt, “A toolkit for interactive 
sonification,” Proc. ICAD, Sydney, Australia, July 2004. 

Figure 3. Screenshot of the SIFT console and a visualization 
application 


