FOCALISATION ON THE TEMPORAL CONTEXT OF COMPLEX SEQUENCES

Anne Guillaume

Institut de Médicine Aérospatiale du Service de Santé des Armées
BP 73
91223 Brétigny sur Orge France
aguillaume@imassa.fr

Carolyn Drake

Laboratoire de Psychologie Expérimentale Université René Descartes
71, avenue Edouard Vaillant
92774 Boulogne-Billancourt France
drake@idf.ext.jussieu.fr

period.
But can these observations be extended to more realistic listening conditions? From a practical point of view, such findings would help the choice of rate during the design of auditory signals such as alarms where a rapid process is searched. In order to verify Jones' theory in more realistic conditions, we investigated participant's behaviour with complex sound sequences composed of two co-occurring isochronous sequences, each with a specific tempo and pitch. We predict that listeners should spontaneously focus on the sequence that occurs at the rate closest to their referent period.

In order to test this hypothesis, participants completed four tasks. We first obtain two measures of their individual referent period (spontaneous motor tempo). We then examined participants' behaviour in relation to complex sequences. First, they were asked to detect a temporal irregularity within one of the subsequences. Second, they were asked to tap in time in a regular fashion with the complex sequences at the rate that seems most natural to them. If the hypothesis of spontaneous focus on an optimal rate is correct, irregularity detection should be better for the sequence closest to the referent period, and similarly, participants should synchronise more frequently with the subsequence closest in tempo to their referent period. Strong correlation between performances on these tasks would provide support for the hypothesis of a common origin of these perceptual and motor phenomena.

2. EXPERIMENT

2.1. Procedure

Task 1: A measure of each individual's referent period was obtained by taking two spontaneous tempo measures (one at the beginning and one at the end of the session). Participants were asked to tap on a drum pad in a regular fashion at the rate that seemed most natural to them.
Task 2: A control condition verified that all the tempi used in Task 3 were equally easy, by asking participants to detect a 15% temporal irregularity within simple isochronous sequences at the same rate as used in Task 3 (where they were presented simultaneously with another subsequence) (108, 180, 300, 500, $833,1388 \mathrm{~ms}$ IOI).

Task 3: The rate on which listeners spontaneous focus their attention was measured with an irregularity detection task within complex sequences composed of two co-occurring isochronous sequences. We created complex sequences composed of two isochronous subsequences, each with a specific tempo and pitch. A small temporal irregularity was introduced into one of the subsequences. Listeners indicated whether the irregularity occurred in the first or second complex sequence. The temporal irregularity was only detectable if the listener was focusing on that particular subsequence [5]. The assumption is that if the spontaneous focusing was unaffected by rate, detection of the temporal irregularity should not be influenced by the subsequent tempo.
Task 4: Another indication of the sequence on which listeners spontaneously focused attention was obtained by asking participants to tap in time with the complex sequences, in a regular fashion, at the rate that seemed most natural to them. It is assumed that they will synchronise with the sequence on which they spontaneously focus.

2.2. Subjects

All 19 subjects had normal hearing. They were all undergraduate psychology students at the University René Descartes.

2.3. Stimuli

In Tasks 3 and 4, each trial consisted of the successive presentation of two complex sequences composed of two subsequences of pure tones that were uniquely defined by tempo and frequency. Each complex sequence was composed of subsequences presented at two different frequencies $(486 \mathrm{~Hz}$ or $1137 \mathrm{~Hz})$, each presented at a different IOI (108, 180, 300, 500, 833 , or 1388 ms). Sequence 1 was composed of $108 \mathrm{~ms}-180 \mathrm{~ms}$ subsequences with 108 ms the high rate subsequence and 180 ms the low one; Sequence 2 of $180 \mathrm{~ms}-300 \mathrm{~ms}$ subsequences with 180 ms the high rate subsequence and 300 ms the low one and so on. In Task 3, a temporal irregularity of 15% was created by advancing or delaying, in relation to regularity, the onset of one tone in one of the sequences, near the beginning, middle or end of the sequence (figure 1). Tones had a duration of 50 ms (including $5-\mathrm{ms}$ onset and offset ramps) and were presented to both ears at 70 dB SPL.

Time (ms)

Figure 1. Stimuli for one trial. Each bar represents one 50-ms, $70-d B$ tone. One example of a temporal irregularity is given (arrow).

2.4. Apparatus

The sequences were generated by a synthesizer and controlled by a personal computer. Listeners sat in a soundproof room and listened to sequences through headphones. In Tasks 2 and 3 , the subjects gave their responses by pressing the left/right button when they thought that the temporal irregularity was in the first/second sequence.

2.5. Results

Task 1: The mean spontaneous motor tempo, averaged over the first and second measures was 691 ms IOI ($\mathrm{SD}=212 \mathrm{~ms}$ IOI).
Task 2: Individual irregularity detection rates within simple isochronous sequences were above 80%, confirming that all temporal irregularities used in Task 3 were easily detectable.
Task 3: Irregularity detection within complex sequences varied as a function of sequence tempo. More specifically, as predicted, detection was higher in each case for sequences of intermediate tempi ($300-500 \mathrm{~ms}$ IOI). For instance, Figure 2 shows that for the fastest sequence (sequence $1=108$ and 180 ms IOI) detection was better for 180 than 108 ms IOI. At the other extreme for the slowest sequence (Sequence $5=833$ and 1388 ms IOI), detection was better at 833 ms IOI. For intermediate rate sequences (Sequence $3=300$ and 500 ms IOI) detection was similar for the two sequences.

Figure 2. Percentage correct detection of a temporal irregularity at each of the ten subsequence tempi, depending on the complex sequence within which the subsequence was embedded.

Task 4: Figure 3 shows mean synchronisation rates with complex sequences: participants systematically synchronised with the rates for which they were better able to detect the temporal irregularities. The cross-over point in Task 3 is almost identical to the cross-over point in Task 4.
During Task 4 (figure 3), listeners synchronised with low rate subsequences considering sequences 1 and 2 and with high rate subsequences considering sequences 4 and 5 .

Note that synchronisation at 108 ms was impossible, due to motor limits.

Figure 3. Percentage synchronisation with one of the two subsequences composing the auditory complex sequences.

5. REFERENCES

[1] Jones, M.R. "Time, our lost dimension: Toward a new theory of perception, attention, and memory." Psychological Review 83: 323-355.
[2] Jones, M.R., and Boltz, M. "Dynamic attending and responses to time." Psychological Review 96: 459-491.
[3] Drake,C., and Botte, M.C. "Tempo sensitivity in auditory sequences: Evidence for a multiple-look model." Perception \& Psychophysics 54: 277-286.
[4] Botte, M.C., Drake,C., Brochard, R. and McAdams S. "Perceptual attenuation of nonfocused auditory streams." Perception \& Psychophysics 59: 419-425.
[5] Brochard, R., Drake C., McAdams S. and Botte M.C. "Perceptual organization of complex auditory sequences: effect of number of simultaneous subsequences and frequency separation." Journal of Experimental Psychology: Human Perception and Performance 25: 17421759.

