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ABSTRACT

We present a multimodal interactive data exploration tool that fa-
cilitates discrimination between visible speech tokens. The multi-
modal tool uses visualization and sonification (non-speech sound)
of data. Visible speech tokens is a class of multidimensional data
that have been used extensively in designing talking head that has
been used in training of deaf individuals by watching speech [1].
Visible speech tokens (consonants), referred to as categories, dif-
fer along a set of pre-measured feature dimensions such as mouth
height, mouth narrowing, jaw rotation and upper-lip retraction.
The data set was visualized with a series of 1D scatter-plots that
differed in color for each category. Sonification was performed
by mapping three qualities of the data (within-category variabil-
ity, between category variability, and category identity) to three
sound parameters (noise amplitude, duration, and pitch). An ex-
periment was conducted to assess the utility of multimodal infor-
mation compared to visual information alone for exploring this
multidimensional data set. Tasks involved answering a series of
questions to determine how well each feature or a set of features
discriminate among categories, which categories are discriminated
and how many. Performance was assessed by measuring accuracy
and reaction time to 36 questions varying in scale of understand-
ing and level of dimension integrality. Scale varied at three levels
(ratio, ordinal, and nominal) and integrality also varied at three
levels (1, 2 , and 3 dimensions). A between-subjects design was
used by assigning subjects to either the multimodal group or vi-
sual only group. Results show that accuracy is better for the mul-
timodal group as the number of dimensions required to answer a
question (integrality) increased. Also, accuracy was 10% better
for the multimodal group for ordinal questions. For discriminating
visible speech tokens, sonification provides useful information in
addition to that given by visualization, particularly for representing
three dimensions simultaneously.

Keywords: multimodal interface, sonification, visible speech
token, multidimensional data, user evaluation.

1. INTRODUCTION

Multidimensional data such as visible speech tokens have a certain
amount of variability along some number of dimensions of mea-
surement. The primary goal of analyzing multidimensional data is
to find those dimensions or features that best discriminate among
the categories of interest. In this work, we have used visible speech
tokens consisting of five consonants (categories) that differ along
four features, i.e., mouth height, mouth narrowing, jaw rotation,
and upper-lip retraction. Since the measured features of the cate-
gories overlap with each other and exhibit considerable variability,

this multidimensional data set is fuzzy. It is not clear which feature
or which combination of features can help to distinguish between
these categories best.

In Section 2, we briefly describe a variety of statistical tools
and visual representations that have been used to analyze and un-
derstand multidimensional data. The most common visual repre-
sentation is a scatter plot. However, as the number of dimensions
increase, there is a combinatorial explosion in the number of scat-
ter plots that need to be cognitively integrated in order to under-
stand multidimensional data. For example, 45 plots are needed to
display 10 features.

In this work, we designed a multimodal representation of the
multidimensional data. The proposed representation consists of
visualization and sonification of certain feature parameters that we
describe in Section 3. We conducted user evaluation to determine
whether the proposed multimodal representation performed better
than the visual representation alone. We describe the experiment
and results in Section 4.

2. PREVIOUS WORK

Regression analysis, multi-dimensional scaling (MDS), principal
component analysis (PCA), cluster analysis, discriminant analy-
sis, and neural network analysis have been used to analyze mul-
tidimensional data [2]. To determine if these statistical methods
yield a good solution, a quantitative statistic usually the eigenvalue
(that gives the overall degree to which a set of dimensions or fea-
tures accounts for the variance in the data set) is used. While this
statistic information is useful, it tells us little about what features
discriminate what categories or how many categories each feature
discriminates. To get this information, some researchers have at-
tempted to visually represent multidimensional fuzzy data using
either measured features or features that were output from statisti-
cal analysis.

A number of visual representations have been used for pre-
senting multidimensional data. The output of cluster analyses is
usually shown in a dendogram or branching tree type of diagram
[2, 3]. One of the most common visual representations of fuzzy
data has been with multiple 2D scatter-plots. The prototypical use
of this representation is given by the vowel space diagram shown
in most acoustic phonetics books (see Figure 1). This diagram is a
2D scatter-plot with the first formant frequency (Hz) on the x-axis
and the second formant frequency (Hz) on the y-axis [4]. Mul-
tiple measurements from many different speakers are plotted on
this graph resulting in clusters representing each vowel. The 2D
scatter-plot is also used to show the results of MDS analysis after
factor rotation. Unlike the vowel space scatter-plot, MDS scatter-
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plots only show the centroid for each category leaving out the vari-
ance of individual observations altogether [3, 5]. This makes it vir-
tually impossible to see the level of overlap among the categories
and to gain a clear understanding of how well the MDS derived
dimensions are able to discriminate categories.

Figure 1: Vowel

Some researchers have sought to add various qualities to scatter-
plots in an attempt to deal with a number of these problems. To
overcome the obscuring of data points, motion was added to 3D
graphs so that the clusters could be seen from multiple viewpoints.
Subjects, however, were no more accurate finding the number of
clusters in the data set in the dynamic condition than in the static
condition. Additionally, allowing subjects to interactively manip-
ulate the display had no effect on accuracy. Finally, more recent
studies replicated these results by showing that motion for 3D
graphs has no benefits for accuracy or reaction time [6, 7]. At-
tempts have also been made to add stereoptic depth cues to 3D
graphs but results show once again no improvement in accuracy
[6]. Overall, attempts to deal with the problems associated with
scatter-plots through visual means can be characterized as not sat-
isfactory.

3. MULTIMODAL TOOL FOR VISIBLE SPEECH
TOKENS

We now present a description of the multimodal representations
and mappings that we employed in the exploration of the multi-
dimensional fuzzy data. We first describe the data set. We then
describe the visual representation followed by the sonification or
data-to-sound mapping. Finally, we describe the interactive inter-
face.

3.1. Visible Speech Token Data

Visible speech token data consists of five consonants (categories)
and four visible features of the face. The five consonants are /b/,
/v/, /f/, /d/, and /w/; and the four features included mouth height,
mouth narrowing, jaw rotation, and upper-lip retraction. Measure-
ments of these features were taken from the John Hopkins Lipread-
ing Corpus (disc II) from a single adult male speaker [8]. (Bern-
stein & Eberhardt, 1986).

3.2. Visual Representation

The data were presented visually in 1D scatter-plots of different
colors for different categories . There was four 1D scatter plots,
one for each of the four features – mouth height, mouth narrowing,
jaw rotation, and upper-lip retraction. Within each scatter plot, the
measurements for consonants /b/, /v/, /f/, /d/, and /w/ were depicted
in green, pink, dark blue, yellow and greenish color respectively.
The mean of each category was indicated by a vertical line. The
data points for each consonant were plotted on a horizontal line.

3.3. Audio Representation

To sonify our multidimensional fuzzy data, we identified three
qualities that are important; (a) the distance of that category from
other categories (between-category variance), (b) the spread of
data points (within-category variance), and (c) the identity of the
category itself. These three properties were mapped onto three pa-
rameters of a computer generated complex tone using CSound: (a)
duration, (b) noise amplitude, and (c) frequency. The minimum
mean distance was mapped to duration so that the greater the dis-
tance, the longer was the duration of the complex tone. The min-
imum mean distance in pixels was mapped to duration in seconds
through an inverse increasing exponential function with a mini-
mum value of .5 seconds and a maximum value of about 4 seconds:
If we think of duration as a traveling metaphor then as one cate-
gory is further from the others the duration (time to get from one
to the others) is longer. In other words, a longer duration means
the categories are further apart for the dimension or feature that is
being sonified. The mapping for duration is described by Equation
1.
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where:
�

= the duration in seconds,
�

= the minimum duration
in seconds (.5 seconds default),

�
= the maximum duration in sec-

onds (4 seconds default), x = the minimum mean distance in pixels,
and r = the rate of the increasing function (.15 for this mapping).

The second category, within category variance, was mapped
to noise amplitude with the higher standard deviations resulting
in louder white noise. The transformation of the noise amplitude
used an exponential function so that small differences in standard
deviation could be discriminated and vary large standard devia-
tions would only go to a maximum value. Before the transforma-
tion, however, the minimum standard deviation for the feature or
dimension was found. This was used as a baseline for all other
standard deviations in the feature. The following was then used to
calculate the noise amplitude:
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(2)

where
�

= the noise amplitude in csound units, r = the rate of
the exponential function (.08 for this mapping),

�
= the standard

deviation,
�

= the minimum standard deviation, and
$

= the max-
imum amplitude (8000 csound units). Noise amplitude provides
an appropriate representation for the clarity of the category. Thus,
categories with large within category variance are unclear (widely
spread data points) and are more noisy.

Finally, category identity was mapped to the frequency. The
base frequency was 600Hz for the first category and increased by
200Hz intervals for each category thereafter. This is appropriate
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because most human beings can distinguish between appropriately
spaced five frequencies. All of the three mappings were integrated
in one tone. The complex tone representing each category was
composed of four partials and sounded similar to a harmonica.
White noise was played in parallel with the complex tone at the
amplitude calculated by the transform function. To ensure smooth
pleasant sounds while sonifying the data set, both the complex tone
and noise were passed through an amplitude envelop with a rise
and fall time of 100ms.

We expected that the the metaphors or representations cho-
sen for the delivery of information regarding these properties will
allow users to discern the properties of the categories well. In sum-
mary, this mapping was chosen to provide a simple yet informative
representation of the data that should facilitate data exploration.
We expect to include a complete formal description of these map-
pings in the final version of the paper.

3.4. Interactive Interface

The multimodal interactive tool was designed so that the visual in-
formation was present at all times on the screen while the auditory
information was presented only when requested. The interface for
the multimodal tool contained two windows: the feature windows
for visual display and and the command window for controlling
sonification. The command window consists of sliders for adjust-
ing parameters of the sound: frequency, duration, and amplitude.
By default, for each sonification, we chose to sonify the properties
at preselected default sound parameters. However, the users were
allowed to adjust these according to their comfort level.

4. USER EVALUATION

A experiment was conducted to learn whether or not the multi-
modal data exploration tool is beneficial in discriminating visible
speech tokens based on their four features. In order to find which
features discriminate best and to what extent, three types of ques-
tions were designed: ratio, ordinal, and nominal. Ratio level ques-
tions required subjects to make distinctions of degree in how well
features or sets of features discriminate among categories. For ex-
ample, a typical question was to what degree does feature 1 dis-
criminate category 3 from all other categories. The user had to
choose an answer from five choices: (A) 0-20%, (B) 20-40%, (C)
40-60%, (D) 60-80%, and (E) 80-100%. Ordinal questions re-
quired subjects to understand the number of categories that are
discriminated by one or more features. For example, a typical
question was how many categories does feature 1 discriminate?
The user had to choose an answer from five choices: (A) 1, (B) 2,
(C) 3, (D) 4, and (E) 5. Finally, nominal level questions required
subjects to know exactly which categories are discriminated. For
example, a typical question was which category is best discrimi-
nated by feature 4? The user had to choose an answer from five
choices: (A) category 1, (B) category 2, (C) category 3, (D) cate-
gory 4, and (E) category 5.

The integrality of each question is the number of features that
the subject must simultaneously consider to answer the question.
The levels of integrality include: a single dimension (feature), 2
dimensions, and 3 dimensions. For example, a typical question
that required integration of 2 dimensions was which category is
best discriminated by features 2 and 4? The user had to choose
an answer from five choices: (A) category 1, (B) category 2, (C)
category 3, (D) category 4, and (E) category 5.

The question scale was fully crossed with level of integrality
to produce (3 x 3) = 9 different questions. Each type of question
appeared 4 times for a total of 36 observations per subject. All
probe questions were presented in random order and included five
multiple-choice alternatives. With five alternatives, the probability
of guessing correctly is 20%. Thus, accuracy was evaluated with
20% as the baseline.

The experiment was a one factor (modality) between-subjects
nested design to elminate any learning effects that may occur in a
within-subjects design. The modality factor had two levels: multi-
modal (visual + auditory) information or visual information alone.
Under each level was nested a two factor within-subjects 3 x 3 fac-
torial design. The first factor was question scale and included three
levels: ratio, ordinal, and nominal. The second factor was question
integrality and included three levels: 1, 2, and 3 dimensions. Re-
action time and accuracy were measured with a series of questions
that varied along two dimensions: scale of analysis and level of
integrality [6].

A total of 12 students served as subjects for the experiment.
Six were randomly assigned to the visual only condition and the
remaining six were assigned to the visual + auditory condition.
The exploration tool was written in C,C++ and SGI’s OpenGL 1.1
along with the Xforms 0.88.1 library. The tool was run on six Sil-
icon Graphics Indy Workstations running IRIX 6.2. The subjects
in both experimental groups first went through the training phase
followed by the test phase of the experiment.

5. SUMMARY OF RESULTS

The results are organized with the overall performance for multi-
modal versus visual only groups presented first. Next, the results
are broken-down by integrality followed by scale.

The mean accuracy was .40 for the multimodal group and .38
for the visual only group. The reaction time was 40.54 for the
multimodal group and 32.42 for the visual only group. The mean
reaction time for the multimodal group was significantly slower
than the visual only group by about 8 seconds (t(45) = 3.59, p �
.05). There are two explanations for this delay. The first expla-
nation is that the duration parameter with a maximum time of 5
seconds/category added considerably more time to the data explo-
ration than was expected. It may be possible to lower this max-
imum duration to 2 seconds/category and retain the same level
of discrimination. The second explanation, however, is that more
time is needed by subjects to decide how to use the sonification
functions of the data exploration tool.

The mean reaction times across levels of question integrality
are 26.21, 34.52, and 36.51 seconds for 1, 2 and 3 dimensions for
the visual group and 26.31, 42.30, and 53.01 seconds for the mul-
timodal group. As more features must be considered to answer the
question, reaction time increases for the multimodal group (F(2) =
30.71, p � .01) and the visual only group (F(2) = 6.17, p = .018).
Additionally, reaction time is longer for the multimodal group than
the visual only group as question integrality increases.

The mean accuracy across levels of question integrality was
.39, .33, and .49 for the multimodal group for 1, 2, and 3 dimen-
sions respectively. The mean accuracy across levels of question
integrality was .43, .37, and .35 for the visual only group for 1,
2, and 3 dimensions respectively. The multimodal and the vi-
sual only groups are at the same accuracy for the first and the
second level of question integrality. However, at the third level
they diverged strongly with accuracy for the multimodal group in-
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creasing to 49.5% and accuracy for the visual only group decreas-
ing to 35.2% (t(15) = 1.85, p � .05). This result suggests that
the addition of sound to the 1D scatter-plots increases accuracy
when integrating over multiple dimensions. The question remains,
however, why this increase in accuracy was not also seen for two
dimensions. One possible explanation is that subjects relied on
mostly visual information for simple comparisons within one or
two dimensions and only switched to sonification for more com-
plex comparisons. Another explanation is that it is perceptually
difficult to integrate three rather than two separate scatter-plots but
much easier to integrate successive tones.

The mean accuracy for the multimodal group for ratio, ordi-
nal, and nominal questions was .41, .28, and .51 respectively. The
mean accuracy for the visual only group for these questions was
.42, .22, and .57 respectively. The nominal questions resulted in
the highest accuracy followed by the ratio questions and finally the
ordinal questions. This is somewhat surprising considering that the
ratio questions were thought to be the most difficult. Ratio ques-
tions required the subjects to integrate the mean and variance of the
category in question, compare it to the mean and variance of the
closest category, and come up with the overall degree of difference.
The ordinal questions on the other hand only required subjects to
focus on the mean differences and establish a criterion by which
the category of interest could be counted as a discriminated cate-
gory. However, it may be the case that ability to visually separate
the mean and variance can account for the results. With ratio ques-
tions, the scatter-plots facilitate the integration of the mean and
variance thus allowing for fairly accurate estimations of degree of
difference. This same facilitation works against subjects when at-
tempting to answer the ordinal questions because they must now
consider the difference in means while almost ignoring the vari-
ance. This interpretation is supported by a number of questions
asked by subjects during the training phase of the experiment con-
cerning ordinal questions. The subjects seemed to have trouble
seeing the difference between means independent of the overlap
in the spread of data points. With the auditory information, how-
ever, it was much easier to make this distinction because it was
much easier to discriminate tone duration (differences in means)
and noise amplitude (spread of data points).

For the ratio and nominal scale questions there was no sig-
nificant difference in the mean accuracy between multimodal and
visual only group. However, for the ordinal scale questions there
is a significant 10% increase in accuracy for the multimodal group
(t(15) = 1.54, p � .05). One explanation for this is that subjects
could have used a simple strategy of counting tones with a duration
longer than some criterion. This would be much easier than look-
ing at the scatter-plots and trying to see how far apart are the dis-
tributions for each category. This is particularly true as the number
of categories increase. Here, there were five categories represent-
ing five consonants. If, however, all consonants were represented
then there would be about 15 categories.

The reaction time for the multimodal group for ratio, ordinal,
and nominal questions was 36.56, 40.83, and 44.22 seconds re-
spectively, while they were 32.34, 34.48, and 30.43 seconds for
the visual only group. Reaction time for the visual only group
stays about the same across all levels of question scale ranging
from about 30-35%. Reaction time for the multimodal group ap-
pears to increase, but this change is not significant. Consistent
with the reaction times for question integrality, reaction time for
the multimodal group is always slower than the visual only group.

6. CONCLUSIONS

The primary purpose of this experiment was to determine if au-
ditory information in addition to scatter-plots in a data exploration
tool improve the evaluation and understanding of fuzzy categorical
data.

Generally, it was hypothesized that the availability of auditory
information would provide more accurate evaluations of the data
set. However, taking into account all dimensions and all scales, the
results showed that the accuracy performance of the multimodal
group did not differ significantly from the visual only group. It is
important to note that addition of sound did not distract or degrade
the performance.

The second hypothesis was that subjects would be more accu-
rate evaluating multiple dimensions with auditory and visual than
with just visual information alone. The results supported this hy-
pothesis by showing that accuracy was significantly better for the
multimodal group than the visual only group with questions re-
quiring the integration of three dimensions. We find this the most
significant finding of this experiment.

Finally, it was hypothesized that auditory in addition to visual
information would allow for more accurate evaluations of ques-
tions at all scales. This hypothesis was also partially supported
by the results of the experiment. Although for both nominal and
ratio scales subjects performed about the same in both experimen-
tal groups, subjects performed about 10% better in the multimodal
group than in the visual only group for the ordinal scale.
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