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ABSTRACT

Any theory on the design of auditory displays must be predicated
on a proper understanding of the temporal and spatial characteris-
tics of audition. In this paper, we revisit a classic problem of psy-
choacoustics related to the time-dependent characteristics of audi-
tory thresholds. We offer new insight to this area and suggest how
the concept of information and uncertainty can help elucidate the
process underlying auditory thresholds. We also compare similar
results obtained in vision, results which have played a vital role in
the design of visual displays.

1. INTRODUCTION

Psychophysics began historically with the study of sensory thresh-
olds through the work of E.H. Weber in the 19th century. The
threshold is a measure of the sensitivity of the sensory system to
changes in the environment. Thresholds determine the variation in
signal magnitude required for a human subject to register or appre-
hend a change in the sensory signal. In auditory intensity discrim-
ination experiments, a subject is required to distinguish between
two tones of intensity I and I +∆I. ∆I represents the change
in intensity required for the subject to notice a difference in signal
magnitude. The fractional change ∆I/I is often called the Weber
fraction. Measurements of Weber fractions can be complicated by
the effects of adaptation. Adaptation is due to prolonged exposure
to a sensory signal and can introduce time-dependent changes to
the value of the threshold.

Another complication arises naturally from the fact that there
exist no unique way to define a sensory threshold. Figure 1 demon-
strates this problem. Illustrated are three well-known methods for
measuring thresholds in psychoacoustics. In the past, researchers
have tacitly assumed that the three methods would yield compara-
ble values for the thresholds. This assumption is now known to
be false (e.g. for hearing see [1]; for vision, [2]; for the senses in
general, [3]). A detailed explanation on the differences between
the different methods can be found in [3] and [4].

2. THE “THRES-HOLY” TRINITY

Having accepted that there is no unique way of determining sen-
sory thresholds, we now turn to ask what process lies at the heart
of each type of experiment. In other words, what salient sensory
features are highlighted by each of the three experimental method?
In type I experiments (‘gated’ or ‘difference’), the subject is pre-
sented a tone followed by a silent period and a second tone. The
subject’s task is to determine whether (1) both tones are of iden-
tical intensity I (i.e. the pedestal intensity), or (2) of differing
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Figure 1: Three methods for defining thresholds.

intensities (i.e. one is I and the other is I + ∆I). The thresh-
old measured by this method is the result of imperfect memory in
comparing tone 1 to tone 2. Such imperfections may arise from
sensory noise or cognitive noise or both (e.g. [5]).

The type II threshold (‘continuous’ or ‘increment’) involves
determining the subject’s sensitivity to continuous changes in sig-
nal magnitude. The subject is presented with one of two possible
choices, either (1) a constant signal with intensity I or (2) a sig-
nal with intensity I followed by an increment ∆I superimposed
continuously upon the pedestal. The subject’s task is to determine
which of the two possibilities was heard. In contrast to the type
I experiments, this approach does not involve the comparison of
two tones in memory. What we shall demonstrate in this paper is
that the major factor underlying intensity resolution in the case of
type II or ‘incremental’ thresholds is the effect of adaptation.

Finally, we will address the type III measurement most com-
monly called ‘modulation’. The method of modulation was pop-
ularised by the classic experiments of Riesz [6]. Riesz used the
method of modulation to avoid artifacts that appeared because of
the sharp onset of the signal. A sharp onset introduces high fre-
quency components in the signal (e.g. Gibb’s effect) and can be a
source of contamination since it provides extra cues to the subject
(e.g. [7]). Riesz’s modulation technique involves the detection
of beat frequencies produced by two pure tones differing slightly
in frequency. By inspection, it is easy to conclude that the tech-
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nique of modulation is closest to the type II technique. This hy-
pothesis is further supported by the fact that the results of Riesz’s
experiment are similar to the results obtained from the incremen-
tal method. We shall demonstrate later that the results of Riesz
follow in a straightforward manner from the same theory used to
account for incremental thresholds. It also bears to note briefly
that the modulation technique is similar to the method by which
flicker fusion is measured in vision.

3. THEORIES OF THRESHOLDS

The modern approach to analysing data from threshold experi-
ments is to use signal detection theory to study the effects of sen-
sitivity (d0) as a function of pedestal intensity [8]. This technique
has been successful and relies on assumptions pertaining to the
shape of certain underlying distributions. These distributions gov-
ern the error associated with the internal representation of sensory
signals. The error may be due to sensory or cognitive noise, and
the distribution is generally assumed to be Gaussian with fixed
variance. Laming in particular has developed an entire sensory
theory based upon the so-called concept of ‘differential coupling’
which leads naturally to the signal detection approach in threshold
analysis [3].

Successful as it is, the signal detection approach has provided
a plausible answer for only type I thresholds. It fails otherwise
to provide a simple, conceptual explanation for type II and type
III thresholds. Green and Swets, for example, noted that the
receiver-operator characteristics (ROC) for type II thresholds devi-
ate substantially from the prediction of a normal distribution, fixed
variance model [8]. They went so far as to propose an alterna-
tive model where the underlying distributions for noise and noise
plus signal remained Gaussian, but with differing values of vari-
ance for the noise only and the noise plus signal cases. Laming
continued this idea by formulating the “non-central chi-squared
model” which accounts for the asymmetry between the noise and
the noise plus signal cases [3]. However this model, even if cor-
rect, is mathematically complex and does not readily account for
the time-dependence of thresholds.

We propose a relatively simpler explanation for the results of
type II and type III threshold measurements in terms of the infor-
mation transmission by auditory neurons. Our theory is able to ac-
count for both the shape of the Weber fraction, its time-dependence
as well as many threshold equations discovered empirically. We
will now present our theory and show its consequences.

4. INFORMATION TRANSMITTED BY NEURONS

The entropy theory is a mathematical theory of the senses under
development for over 30 years (e.g. [9]). The central idea to this
approach is that uncertainty underlies perception, and that the task
of perception is to remove or reduce this uncertainty. When uncer-
tainty is gone, the process of perception ceases. Uncertainty is cal-
culated at the level of the sensory receptor. We model the receptor
uncertainty in terms of the mathematics of entropy (or information
theory) as pioneered by Ludwig Boltzmann in physics and Claude
Shannon in electrical engineering. In analogy with Boltzmann
where he related mathematical entropy to measurable or thermo-
dynamic entropy through his famous equationS = −kBH, we too
relate mathematical entropy to the response of the neuron through
the equation

F = kH, (1)

where H is uncertainty or entropy, k is a constant, and F is the
neural firing rate. The remainder of this section will be devoted to
deriving an expression for the uncertainty H.

In this abstract we lack the space to give a full derivation of
the uncertainty function H. However, details can be easily found
in any of a number of papers written on this subject (e.g. [10] [9]
[11] [12]), although the reader is warned that theory has undergone
continual evolution since the 1970’s. The version we shall use here
is the one documented in [12].

The basic premise for calculating H is to assume that the re-
ceptor samples the sensory signal to estimate the magnitude of the
input. The uncertainty in signal magnitude is attributed to the
variability or fluctuation in the signal at the receptor level. For
example, it is well-known that fluctuations in the number of pho-
tons at the photoreceptor level follows a Poisson distribution. The
receptor uncertainty is then calculated from the signal distribution
using the Boltzmann-Shannon definition of information

H = −
Z

p (x) lnp (x)dx. (2)

Fluctuations in the signal magnitude can follow a non-Gaussian
distribution although the sample means will be normally distributed
according to the central limit theorem. The variance of the distri-
bution will also be reduced by a factor m representing the sample
size. Hence p (x) in (2) will be a normal distribution with variance
σ2S/m. The noise in the system is assumed to be uncorrelated with
the input and is Gaussianly distributed. Calculating the transmit-
ted information by taking the difference between the entropy of
signal plus noise and the entropy of noise alone, we obtain

H =
1

2
ln

µ
1 +

σ2S/m

σ2N

¶
. (3)

H represents the receptor uncertainty in sampling the signal mag-
nitude, σ2S is the variance of the signal distribution, m the sample
size and σ2N is the variance of the noise.

Those readers finding it difficult to follow the derivation of
(3) are invited to check past references where a full derivation has
been given. Otherwise, it should be noted that (3) resembles the
expression for channel capacity as derived by Shannon for a chan-
nel with Gaussian signal and noise [13].

Two additional relationships are required to develop a usable
form for H. The first relates the fluctuations as observed in the
receptive field with the signal magnitude I . This amounts to pos-
tulating a relationship between the mean of the signal and its vari-
ance. For example in vision, photon statistics obey a Poisson
distribution where variance equals the mean. In audition, the anal-
ysis is trickier because the auditory signal undergoes a number of
transformations, from fluctuations in air pressure to fluctuations in
fluid, before reaching the receptive sites. However, it is plausible
to assume that signals of larger magnitude will be associated with
greater fluctuations. Thus the monotonic relationship between
variance and mean should take the form

σ2S ∝ (I + δI)p , (4)

where I is the signal magnitude or mean, p is a constant that can be
derived in principle from the physical considerations of the trans-
duction process, and δI is a term that accounts for the non-zero
fluctuations at the receptor level in the absence of a signal.
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Figure 2: Solution of Eq. (9) to the type II stimulus profile.

When σ2N is taken to be constant, (3) can be rewritten with (4)
as

H =
1

2
ln

µ
1 +

β (I + δI)p

m

¶
, (5)

where β is a constant amalgamated from σ2N and the proportion-
ality constant in (4). The only remaining unknown quantity is the
sample size m. We assume that the receptor increases its sample
size over time to improve its estimate of the sample mean. If meq

denotes the optimal or equilibrium sample size, then the sampling
rate dm/dt will change according to the following relationship

dm

dt
= f (m−meq) , (6)

where f is some function. Assuming that m does not differ ap-
preciably from the equilibrium value meq, we can expand (6) as a
Taylor series around m = meq with the restriction that dm/dt at
m = meq equals zero. This condition simply implies that sam-
pling will stop when m reaches its equilibrium value. Truncating
the expansion to first-order we have

dm

dt
= −a (m−meq) , (7)

where a is a positive inverse time constant. Finally, since it is
expected that larger sample sizes are associated with signals of
larger magnitude, we take meq to be a monotonic function of I ,
i.e.

meq =m0
eq (I + δI)q , (8)

where q is a fixed exponent and m0
eq is a constant to assure the

correct units for meq .
Summarising the three master equations, we have

F = kH

H =
1

2
ln

µ
1 +

β (I + δI)p

m

¶
(9)

dm

dt
= −a £m−m0

eq (I + δI)q
¤
.

The solution of these three equations for any function I = I (t) al-
lows us to predict the neural response (in terms of firing frequency)
as a function of both signal magnitude I and signal duration t.
That is, we can solve for F = F (I, t) given any time-varying
stimulus I (t). In several earlier papers, we demonstrated the util-
ity of the equations in predicting a wide range of experimental
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Figure 3: Visual flash thresholds measured by Roufs [18] at differ-
ent pedestal intensities.

results observed at the neural level [11] [12]. Equation (9) has
been used to estimate adaptation curves, spontaneous neural ac-
tivity, driven firing rate curves, recovery and the response to other
signal profiles with considerable success.

In the next section, we shall use these same equations with
an additional threshold hypothesis to help elucidate the process
underlying type II and type III thresholds.

5. THRESHOLD HYPOTHESIS AND RESULTS

We begin by solving the neural response to a type II signal profile.
Figure 2 illustrates the associated neural response as a function of
signal duration. Note that this result is in good qualitative agree-
ment with the results obtained in the cat auditory nerve [14]. We
now introduce the threshold hypothesis governing the detection of
the increment: an increment is detected if and only if the change
in uncertainty (or the change in firing rate) over the interval of the
increment exceeds a constant ∆H. In other words, there must be
a reduction in the receptor uncertainty (or firing rate) before an in-
crement is detected. Mathematically we can state this hypothesis
as

H (I +∆I, 0)−H (I +∆I,∆t) ≥∆H. (10)

∆H is a constant independent of the signal magnitude I . Note
that our threshold hypothesis or condition is similar to Fechner’s
conjecture of the constant subjective jnd (just noticeable differ-
ence).

The threshold condition along with the solution of theH func-
tion to the type II signal profile will permit a numerical estimate
of the Weber fraction ∆I/I as both a function of I and of ∆t.
However, we can do much better than that because, for relevant
physiological parameters, the term ∆I/ (I + δI) is always small.
Furthermore, we have found ∆H to be small permitting us to ex-
pand the complex expression in (10) to first-order in∆I/ (I + δI)
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Figure 4: Data of Carlyon and Moore [1] showing Weber fraction
as a function pedestal intensity.

and ∆H to obtain

∆I

I
=

2∆H

q (1− e−a∆t)

µ
1 +

δI

I

¶µ
1 +

1

β (I + δI)p−q

¶
.

(11)
These approximations will become apparent when (11) is com-
pared with data. Equation (11) is the master equation from which
many empirical threshold equations can be derived. First consider
the case where δI can be ignored (i.e. δI ¿ I). This will occur
for most values of I above threshold. Holding ∆t constant, we
rewrite (11) as

∆I

I
= A+

B

Ip−q
, (12)

where A and B are constants. This is the empirical equation pro-
posed by Riesz to account for his threshold data [6]. If we instead
hold I constant and look at the Weber fraction as a function of
increment duration, we find

∆I

I
=

C

(1− e−a∆t)
, (13)

where C is a constant. Equation (13) accounts nicely for many
experimental results obtained from time-dependent measurements
of the Weber fraction (e.g. [7]).

Returning to (11), if we look at the limit as I −→ 0, we have

∆I

I
−→ D

I
, (14)

where D is a constant. In other words, as I approaches zero, the
Weber fraction falls with slope one with respect to I . This is in
agreement with observations made in connection with the loudness
function [15]. When I is set equal to 0, the type II measurement
becomes an experiment for absolute thresholds. Setting I = 0 in
(11), we obtain

∆I =
∆I∞

1− e−a∆t
, (15)
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Figure 5: Data from the classic study by Garner and Miller [7].
Weber fraction as a function of increment duration.

where ∆I∞ is a constant representing the absolute minimum
threshold. Equation (15) was proposed to account for the absolute
threshold in audition [16] [17]. Finally, if the stimulus duration is
much shorter than the inverse time constant a (i.e. ∆t¿ 1/a), we
can take a first-order expansion of (15) in terms of a∆t to obtain

∆I ·∆t = E, (16)

where E is a constant. Equation (16) is simply a statement of
Bloch’s law.

We have shown thus far that (11) confers certain explanatory
powers by unifying many of the threshold equations that have been
discovered empirically. The next step is to compare the predic-
tions of the equation to experimental data. We begin first with vi-
sion. In the study of Roufs [18], visual flash thresholds were mea-
sured under a variety of conditions using an experimental setup
identical to the intensity profile shown in Figure 2 (i.e. a type II
threshold). The data from the experiment are plotted in Figure
3 showing ∆I as a function of increment duration ∆t. Pedestal
intensity I is set as a parameter in the experiment. The salient
feature of the data is that the threshold decreases as a function of
increasing increment duration. This is what is predicted by (11).
While the full details of the curve-fit are not provided here (for
details please see [18]), it suffices to note that a total of 7 param-
eters were used to fit 9 equations or an average of less than one
parameter per curve.

Next we consider a demonstration with auditory data. In the
study of Carlyon and Moore [1], they measured the threshold from
a type II experiment for tones at 500 Hz. We combined this study
with an older study by Garner and Miller using data obtained also
at 500 Hz [7]. In total 5 parameters were used to fit 3 curves for
an average of just over 1.5 parameters per curve. The data are
shown in Figs. 4 and 5. Note the poor fit in Figure 5 for small
∆t. This is entirely consistent with what we now know about the
Garner and Miller data – that high frequency cues may have given
the subjects an advantage in detecting shorter increments.
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Figure 6: Solution of Eq. (9) to the type III stimulus profile.

In passing, we note that (11) is an equation of 5 parameters.
While 5 parameters may seem excessive, we must remember that
(11) can handle variations in both pedestal intensity and increment
duration. For example, any arbitrary mathematical expression cre-
ated to fit ∆I/I vs. I data will require at least 3 parameters (c.f.
Riesz’s proposed equation [6]). Similarly ∆I/I vs. ∆t data will
require at least 2 parameters (c.f. Plomp and Bouman’s proposed
equation [16]). Hence, 2+3 parameters seems to be a reasonable
number of parameters for an equation that handles both intensity
and duration.

A final remark regarding ∆H. Equation (11) predicts a linear
relationship between the threshold (i.e. ∆I) and ∆H. Linearity
here implies that a negative increment (i.e. a decrement) will obey
the same equation as a positive increment. This is in fact what
has been observed experimentally [18]. When an experiment is
carried out with a decrement, it was found that the value of the
threshold is identical to the threshold obtained for an increment, as
predicted by (11).

6. SPECULATIONS AND FUTURE WORK

In this section we outline some recent work in extending our the-
ory to type III thresholds. We begin once again by solving (9)
to obtain the time-dependent neural response or uncertainty H.
The theoretically predicted response to a sinusoidal input I (t) =
I +∆I sin (ωt) is shown in Figure 6. Note that the solution at
t > 0 will have both a transient and (for modulation periods of
sufficient length) a steady-state component. Since our primarily
application will be for flicker fusion phenomena in vision (where
the flicker threshold is defined for steady-state conditions), we will
only calculate the threshold in the steady-state region. Let us de-
note the steady-state response as HSS . The threshold hypothe-
sis then states that the excursion between the highest and lowest
value of the uncertainty or response function must exceed a con-
stant ∆H:

HSS (π/4ω)−HSS (3π/4ω) ≥ ∆H. (17)

Using the same approximations used in the derivation of (11), we
take a first order Taylor series expansion in both ∆I/ (I + δI) and
∆H to obtain

∆I

I
= Θ (ω)∆H

µ
1 +

δI

I

¶µ
1 +

1

β (I + δI)p−q

¶
, (18)
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Figure 7: Flicker sensitivity as a function of modulation frequency.
Data of Roufs [18].

where Θ (ω) is a function of the modulation frequency ω = 2πf :

Θ (ω) =

s
a2 + ω2

a2 (p− q)2 + p2ω2
. (19)

With the exception of the multiplicative factor, both (11) and
(18) are identical in form. This implies that the value of the thresh-
old for a type II experiment can be related to the value of a type III
threshold by the following equation

log
³
∆I/I|type II

´
= log

³
∆I/I|type III

´
+G (f) , (20)

where G (f) is a function of the modulation frequency but not the
pedestal intensity. This relationship was observed recently in au-
ditory experiments [19]. In the study by Wojtczak and Viemeis-
ter, they measured both the type II and the type III threshold for
different pedestal conditions and obtained the following equation
governing the relationship between the two thresholds,

log
³
∆I/I|type II

´
= 0.88 log

³
∆I/I|type III

´
+ constant (f) .

(21)
Apart from the slope, (20) and (21) are identical. The failure
of the theory to predict a slope less than one is a mystery to us,
although it should be noted that certain assumptions were made
in the derivation of (18) which may not match the conditions un-
der which (21) was determined (i.e. steady vs. non–steady state
thresholds).

Finally, we compare the predictions of (18) to data obtained
from flicker fusion experiments. Flicker is the phenomenon
whereby the visual system detects temporal fluctuations in lumi-
nance. Flicker fusion is a type III threshold experiment, and
sensitivity to flicker is defined as the reciprocal of the threshold,
i.e. 1/∆I. The flicker threshold has played an integral role in
defining a standard for televisions, movies and video display units.
Flicker is most easily observed for mid-range frequencies (3-15

ICAD02-5



Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

Hz) with sensitivity falling off rapidly for higher frequencies. This
falloff has been attributed to the low-pass characteristics or “slug-
gishness” of the visual system. Sensitivity also decreases for the
lower frequencies; currently there is no known mechanism to ex-
plain this behaviour. However we shall see shortly that the falloff
at low frequencies can be explained by our theory.

In Figure 7, the flicker fusion results of Roufs [18] are shown.
Thresholds were measured under steady-state conditions and thus
(18) can be used to fit the data. The solid lines show the pre-
dictions of (18) with the same parameter values used to generate
the curves in Figure 7. We see that the success of this method is
mixed. On the one hand, the theory predicts the correct spacing
between the different curves. More importantly, the theory also
predicts the distinctive sigmoidal-like rise in sensitivity at low fre-
quencies found in the data. However, the theory fails to show any
drop in sensitivity for high modulation frequencies. This is not
surprising to us – we have, thus far, made no provisions to incor-
porate low-pass characteristics associated with the sensory system
in our theory. Recently we have sought to rectify this matter [20].
However we have yet to find an approach beyond making ad hoc
modifications to the current theory. Part of the problem is that
we do not know whether the cutoff occurs because of peripheral
or central mechanisms. Presently this is one area we are actively
pursuing.

7. CONCLUSIONS

In this paper we have suggested that sensory information or uncer-
tainty is the primary process mediating threshold phenomena of
the type II and type III variety. Our theory complements the role
that signal detection theory has in providing a possible explanation
for type I thresholds. Through the additional use of a threshold hy-
pothesis, we were able to derive a number of well-known empiri-
cal observations and equations within psychoacoustics. It can be
shown that the theory is general enough to encompass results from
the other senses, particularly from vision. The salient feature of
our work is the idea that threshold is achieved only when a fixed
amount of information is transmitted from the neural periphery.

In closing, we make several remarks as to how a theory of
thresholds can be used in the design of an auditory display. Re-
cently, there has been an interest in using auditory displays to ren-
der entire visual scenes (e.g. [21]). The mapping of a visual scene
onto an auditory display requires good understanding of the spatial
and temporal characteristics of both vision and audition. While
our theory at present only accounts for temporal effects, it does
demonstrate that, apart from differences in parameter values, the
temporal characteristics of vision are similar to that of audition.
This would tend to suggest that a visual scene can, in principle, be
mapped onto an auditory scene with only the changes to allow for
differences in spatial and temporal resolution.
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