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ABSTRACT
Unlike their visual counterparts, immersive spatialized audio displays are highly sensitive to individual differences in the sig-
nal processing parameters associated with source placement in azimuth and elevation. We introduce Active Sensory Tuning
(AST) as a general framework within which human observers can efficiently search through large design spaces. The applica-
tion of AST to individualizing spatialized audio displays is demonstrated and its use in a broader range of auditory data pro-
cessing and synthesis is discussed.
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INTRODUCTION
As digital signal processing (DSP) technology has matured, its application has proliferated in specialized industrial and mili-
tary devices as well as in a multitude of consumer products and services. Many of these DSP systems are designed to enhance
signals that are perceptually relevant to the user’s environment. Examples include digital hearing aids, cellular telephones,
home theater, and devices designed specifically for use in noisy environments, such as underwater microphones. Since many
of these systems are designed to process acoustic signals, the incorporation of the listener’s subjective preferences into the sys-
tem specification may significantly improve the system’s performance for perceptually relevant criteria such as speech intelli-
gibility, acoustic source localization, and background noise suppression.
The engineering process of optimizing system parameters is usually based on a predefined objective/quantitative measure of
performance. Our research concerns the development of methods to efficiently and effectively incorporate subjective prefer-
ences in place of the objective metric in the design process. This methodology has been denoted active sensory tuning, or AST
[1]. In the following, we review the general ideas associated with AST and then focus on their application in fitting individual-
ized head-related transfer functions (HRTFs) for spatialized audio.
BACKGROUND
Consider the task of adjusting the volume to a desired level on a stereo system. The objective of the listener is to rotate the vol-
ume control knob until the desired loudness level is achieved. In this example, the system state representing the position of the
volume controller, w, is translated into the psychophysical percept of loudness. The subjective criterion used for selecting the
optimal position of the knob is the perceived difference between the current and desired loudness. In contrast, if the goal is to
realize a particular sound pressure level (SPL), which is an objectively measurable quantity, the volume level could be selected
by minimizing an objective cost function such as the squared error between the desired and realized SPL. In either case, should
the optimal setting be unknown initially, the volume level must be adjusted using some strategy until the subjective or objec-
tive criterion is met.
When a subjective criterion is the means by which the system parameters are determined, the optimization may either be per-
formed prescriptively or adaptively. Our work focuses on the adaptive approach which interactively incorporates subjective
evaluations to improve the quality of a design. For the case of volume control, the problem is relatively simple. But when the
number of design parameters increases, the relationship to the signal’s perceptual space becomes much more complicated, and
a more robust, yet efficient, search strategy is desirable. The advantage of adaptive optimization is that although knowledge of
the relationship between the parameters and desired percept may be exploited, a complete mapping of this relationship is not
required. Rather, the observer is presented with a set of candidate systems, and indicates their relative merit by evaluating the
acoustic signals generated by each system. This subjective evaluation, or response, is utilized by our algorithms to generate a
subsequent set of candidate systems. This approach is analogous to an eyeglass exam, where the patient responds to a series of
preferentially based questions (e.g., which is clearer? which is more blurred?) to search through a decision tree for the best set-
tings.
ACTIVE SENSORY TUNING
The adaptive approach for volume control is mathematically akin to problems in adaptive systems, such as adaptive filters,
adaptive control, or iterative forms of optimization. These forms all share certain attributes in common: a solution is desired, a
criterion by which a candidate solution can be evaluated is given, and one can afford to “wait” while various candidates are
evaluated. In addition, each adaptive system uses the evaluation of a current candidate as a source of feedback for intelligently
selecting the next one. Good adaptive systems are those that are most efficient in their use of feedback; they don’t force one to
wait forever before reasonable solutions are available. If the goal is to obtain the one perfect solution, however, almost all
design problems and their adaptive solutions may require an infinite wait.



Active sensory tuning (AST) is a type of adaptive system in
which the human observer is tightly integrated into the
feedback loop. As shown in Fig. 1, the observer utilizes
their desired outcome to evaluate a set of candidate solu-
tions  according to attributes of the “signals” they
generate. Such signals can be of any sensory form, e.g.,
auditory, visual, tactile, etc. The algorithm utilizes the
observer’s responses to intelligently select the next set of
candidate solutions so that the observer doesn’t have to
wait forever for a reasonable solution to appear. In the
example of volume control above, one candidate is judged
at any given time and the criterion is louder or softer. In the
more general case when a number of parameters must be
adjusted, efficiency may be gained by asking the observer
to judge several candidates at a time.
The design of an AST system falls outside standard adap-
tive systems or optimization theory primarily because the
observer’s response can rarely be considered as belonging
to either an interval or a ratio scale. At worst, an observer can make ordinal judgements to rank the quality of a set of candi-
dates. This weaker number system is incompatible with standard search algorithms. 
One alternative is to substitute mathematical models of the observer’s criteria into the feedback loop. The ISO 532B standard,
for example, substitutes human judgement of loudness with an algorithm that calculates the loudness value of an acoustic stim-
ulus. To the degree that the stimulus condition meets the ISO 532B assumptions, an automatic “volume controller” could
maintain a specified degree of loudness. However, there are many situations in ISO 532B does not hold. Such modelling error
of the observer’s criterion results in design errors in the adapted solution. More generally, the number of accurate observer
models for sensory information is extremely small and the effort required to develop an entirely new metric is often prohibi-
tive.
AST retains the human-in-the-loop structure but alters the nature of the search algorithm to permit ordinal feedback. Such a
shift from either interval or ratio scales to an ordinal scale amounts to transforming any well-behaved criterion function into an
everywhere-non-differentiable form. Few optimization algorithms exist for handling such poorly behaved functions. Among
those we have considered (e.g., cyclic-coordinate method [2], Hooke and Jeeves [3], response surface modeling [4]), the
genetic algorithm (GA) appears to be the most useful.
The Genetic Algorithm [5]
Genetic algorithms differ from traditional search procedures in the following ways:
GAs operate on strings that represent the design parameters rather than on the parameters themselves. The parameter space is
mapped onto a finite-length alphabet. The simplest and most commonly used alphabet is a binary representation, although
other representations have been shown to be beneficial [6]. After encoding the initial randomly selected population, the GA
manipulates the string members using genetic operations until an optimal, or at least improved, parameter set has been found. 
GAs do not require auxiliary information, such as derivatives, to ascend to local maxima. Simple GAs only require fitness val-
ues, which are a simple transformation of the objective function evaluation, or in the case of human feedback, the preference
rankings. The processes of natural selection enable those strings that encode successful parameters with relatively high fitness
to influence the search direction with greater probability than those strings with lower fitness. The evolutionary process has no
memory: its knowledge about producing successful structures is contained in the strings and in the structure of the string
decoders.
A larger population leads to diversity, and, generally a more thorough search for global optima. In comparison to conventional
optimization methods in which the search iterates from point to point in small steps, often terminating at local peaks on a
multi-modal surface, the GA works with multiple strings, ascending towards several extrema in parallel.
There are three basic operations in the mechanics of a simple genetic algorithm: reproduction, crossover, and mutation.
Reproduction is a process in which strings are selected to enter a “mating pool” to pass on their genetic information to the next
generation of prospective solutions with probability proportional to their fitness values. Therefore, strings which encode high
performance parameters are more likely to pass their genetic material on to the following generation (e.g., the reproduction
rules promote the “survival of the fittest” among strings). Once a string has been selected for reproduction, an exact replica of
the string is created and entered into a mating pool to await crossover. 
Crossover is similar to the exchange of genetic material in biological reproduction. In the genetic algorithm, two children are
created from two parents by choosing, at random, a cut-point in the string and crossing the lower and upper strings. If 
denotes the upper and lower binary strings of a parent, then children are created under the mapping
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Fig 1. Block diagram description of adaptive subjective search.



The mutation operator provides insurance against premature convergence of the strings to some local extrema by randomly
switching a bit of a reproducing string with some small probability. In biological terms, mutation protects against the loss of
irrecoverable genetic material from previous suboptimal crossover pairings.
Genetic algorithm search engines in AST
Many properties of the genetic algorithm make it appropriate as a search engine for AST. Since the type of feedback provided
by the observer need be no stronger than ordinal, a psychophysical ranking procedure is all that is required for the search. At
each iteration of the AST procedure, a new generation of candidate solutions is generated based on the ranking of the current
generation by the observer. The iteration continues until a convergence criterion is reached. Within the hierarchy of psycho-
physical scaling procedures, ranking tasks are among the easiest and most reliable. We have implemented both direct ranking
procedures, in which the observer has access to all current members, and a bubble-sort ranking procedure, in which the
observer compares two candidates at a time. 
Two properties of the GA raise problems when applied to AST. The first is that the GA searches over a finite alphabet whereas
many design problems in AST involve continuous parameters. Borrowing from communications engineering where a similar
mismatch is encountered in signal and image quantization, we call this the perceptual tiling problem. In practice, perceptual
tiling means that we want to quantize the design parameters so that (i) all general designs are explored and (ii) designs that
yield indiscriminable candidates are ignored. In the example of volume control, we want to evaluate a set of volumes that
spans the range of desired levels, but we don’t want to compare two settings that are barely discriminable. In the case of MP3,
for example, the goal is to preserve the perceptual discriminability of the original signals by coding only discriminable rather
than all signals. In both examples, we say that the particular tile to which a signal belongs is coded, but any further information
about the signal on that tile is lost.
The second property is the nature of the GA’s nonlinear behavior.
Very few general theories have been developed to predict the
behavior of this algorithm, despite considerable effort. While it has
proven to be a very powerful tool for optimizing a variety of indus-
trial designs, it has been most successful when a large number of
searches (103) can be conducted over a very large number of gener-
ations (106). These dimensions generally fall outside the domain of
psychophysics where even 200 trials may be too large. 
Nevertheless, GA-assisted AST can still handle relatively large
designs when compared with alternative approaches. Fig. 2 shows
results from a simulation of the average number of generations
required to converge to the optimal solution. The binary dimension
of the alphabet is denoted along the abscissa, e.g., a binary dimen-
sion of 10 denotes 210 (1024) design options. The parameter is the
stopping criterion as measured in normalized distance from the
optimal design. The simulation involved ranking 10 candidate
solutions at each generation. For an average task-load threshold of
100 options (10 candidates evaluated over 10 generations), the
results show that a solution living within 90% of the target design
can be reached for 213 (8192) options. A weaker criterion of 80%
appears to handle design sizes on the order of 230 (109). Since the
size of the finite alphabet is determined by the perceptual tiling, it
pays to design as efficient a perceptual tiling of the parameter
space as possible when using GA-assisted AST.
SPATIALIZED AUDIO: INDIVIDUALIZED HRTFs [7]
Like visual goggles in immersive Virtual Reality (VR) systems, headphones hold the promise of 3D audio immersion as long
as the cues for depth, azimuth, and elevation can be properly controlled. The findings of Wenzel [ref] and Wightman and Kis-
tler [ref], among others, have shown that it is possible to synthesize azimuth and elevation cues over headphones, but the qual-
ity of such synthesis depends highly on exactly matching the HRTFs of the individual listener. We have applied AST as an
alternative to measuring the head-related transfer functions (HRTFs) of a listener in an anechoic chamber. In this procedure, a
listener tunes the poles and zeros of a digital filter to emulate their HRTFs for a given position in space. 
The steps of our application follow the outline above. A modification of the ranking procedure was used to speed convergence
based on mathematical simulations for this particular application. For each generation of the GA search, the listener selected
the best four out of eight candidates and then scaled them for proximity to the desired target location. We employed an audi-
tory stimulus synthesized from a “generic” pair of HRTFs for various locations to give the listener a rough indication of spatial
position. To study the convergence behavior of the technique, the search was terminated after 40 generations. In general, sub-
jects were observed to converge within the first 20 generations under the particular GA settings. 
Our primary research focused on the perceptual tile for this problem, details of which can be found in [8]. A low-order pole-
zero model of HRTFs was developed [9] which reduced the nominal parameter space of 150 finite-impulse response coeffi-
cients to 8 poles and 8 zeros for the Directional Transfer Function (DTF) component of the HRTF. Tiles of the pole-zero
parameter space were generated according to a psychophysical measure of spectral shape discrimination for the class of HRTF
spectra. Under this tiling, the entire parameter space can be covered by a binary dimension of 247. A smaller search space was
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Fig 2. Search behavior of GA for a population of size 10.



generated for any given target only using those tiles within roughly
an octant of the desired target.
Fig. 3 shows an example of a typical trial in the procedure. The top
panel shows the highest rated Directional Transfer Function (DTF)
for the first generation along with the target DTFs for the left and
right ear. The degree of deviation is typical of what we observed for
all random initializations. The bottom panel shows the highest rated
DTF after 40 generations. In this case, the subject reported that the
target and designed DTF were discriminable, but that the design was
better localized (more like a point source) than the target, which was
derived from a generic pair of HRTFs. This observation was
reported for many of the conditions by the three subjects who partic-
ipated in the experiment. 
CONCLUSIONS
Active Sensory Tuning is a general technique for searching through
large multidimensional parameter spaces to optimize subjective cri-
teria. It draws upon concepts from sensory scaling, genetic algo-
rithms, and adaptive systems to make efficient use of an observer’s
response. Like other search techniques, AST avoids the exponential
growth in factorial experimental designs by focusing the search on
those parts of the experimental space that are judged to be “best”. In
our experience, this trades favorably with the complexity associated
with the design of efficient perceptual tiles.
The present paper demonstrates the use of AST in fitting generic
HRTFs to individual listeners in spatialized audio. AST can be
applied to a broader range of problems related to auditory displays
as well as to the description or enhancement of acoustic signals.
Within our research group, such applications include underwater
signal processing, automotive design [10], and music synthesis [11]. 
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Fig 3. Example of AST for fitting a 32-dimensional
pole-zero model of a listener’s HRTF. The bottom panel
shows the best design (dashed) for a target HRTF (solid)
after 40 generations. The top panel shows the initial
“best” design. Because of the very poor initial fits, the
range in magnitudes is substantially large in the top
panel than in the bottom panel.


