
Listen: A Data Sonification Toolkit
Catherine M. Wilson and Suresh K. Lodha

Computer Science, University of California—Santa Cruz

Abstract: Data sonification is the representation of data using
sound. Although data sonification has been a subject of research
for the last fifteen years, much remains to be learned about how
data should be mapped to sound, what constitutes a good mapping,
what kinds of data can be meaningfully sonified, what attributes of
data can be meaningfully sonified, and how sonification should be
combined with visualization. On the basis of the work done so far,
we expect that sonification will soon be used routinely in scientific
visualization. In order to encourage the incorporation of
sonification into the research environment, a flexible, adaptable,
extensible, portable, and interactive toolkit is needed.

A primary goal in the design of Listen was to provide such a toolkit
for use in exploring data of any type. Listen, is an object-oriented,
modular system. It provides incremental functionality; researchers
can begin using sonification with a minimum investment of time
and resources. Once sonification has proven its value, researchers
can implement more sophisticated capabilities. Listen can be easily
adapted by the user to a particular environment and extended when
additional functionality is required. A key feature of Listen is that it
can be easily incorporated into an existing visualization system.
Some key words in this essay are sonification, visualization,
interactive, portable, and MIDI.

Introduction
Sonification is the mapping of data values to properties of sound
such as pitch, volume, duration, timbre and location. It is the aural
equivalent of scientific visualization. It is analogous to mapping
data values to color or other properties of light in visualization.
Advantages of data sonification, particularly in conjunction with
visualization, have been recognized in the last few years (Scaletti,
1994). In spite of great deal of work on sonification, the need for a
general-purpose data sonification toolkit, that can conveniently
allow experimentation with scientific data, remains. Such a system

needs to be interactive, flexible and portable. The primary goal in
the creation of Listen was to create such a tool.

Background

Sound Hardware

Many computers, including the SGI workstation, the Sun
SparcStation, the Macintosh, and the PC, contain internal audio
devices. Since the advent of multimedia, the ability to add a MIDI
device has also been implemented on these platforms. The
advantages of MIDI devices are many. They are abundant and
inexpensive. Many sound parameters such as pitch, volume,
timbre, and duration can be controlled by standard MIDI messages.
Modern synthesizers allow many notes to be played simultaneously
and most allow control of stereo balance. If more control of the
sound envelope is needed, proprietary messages can be used if the
device supports them.

The MIDI device used in development of Listen was the Yamaha
PSR-320, an inexpensive synthesizer that supports General MIDI.
It was connected to the computer by an Opcode MIDI translator.

Sound Libraries

The availability of sound libraries greatly simplifies the task of
implementing a sonification system. SGI workstations have an
audio library to control the internal audio device and a MIDI
library to control an external MIDI device. Listenis implemented
on the SGI platform and uses both the audio and MIDI libraries to
control the sound hardware. The use of these libraries makes it
easy to extend the functionality of the program by increasing the
understandability of the interface to the sound hardware.

Sonification Systems

We refer the reader to (Scaletti, 1994) for a survey of applications
of sonification to particular problem domains. The few general
sonification systems that have been created have had limited
success for a number of reasons. The system designed by P.
Astheimer, as an extension of the apE visualization system, limits
the user to implementing a visualization on that system (Astheimer,

1993). The EXVIS system, which is limited to a two-dimensional
iconographic visual display, is not sufficiently general or flexible
(Grinstein and Pickett, 1989). The sonification system by Minghim
and Forrest for visualizing volumetric data and surface properties,
implemented on Macintosh Quadra, is not portable (Minghim and
Forrest, 1995). Carla Scaletti's Kyma system requires exotic sound
hardware, the Capybara (Scaletti, 1994).

Although these devices provide great flexibility in sound synthesis
through the use of digital signal processors (DSPs), they are not
commonly available. Moreover, implementing a sonification
system with this type of device involves extensive knowledge of
sound synthesis algorithms and familiarity with synthesis
hardware.

The Porsonify system designed by Madhyastha and Reed was
implemented on Sun SparcStation without any audio or MIDI
library, which made the task much more difficult and resulted in a
system that was complicated to use and difficult to learn
(Madhyastha and Reed, 1995). To communicate with the sound
devices, daemons and device drivers were written to handle the
interaction with the hardware. Porting the program to another
platform without sound libraries would require new daemons and
drivers to be written -- a daunting task. It is unclear whether the
high level functionality of Porsonify is sufficiently divorced from
the hardware interactions to allow easier porting to a platform such
as SGI that has sound library support. In addition, possibly because
of the constraints of the platform, interaction with Porsonify is
difficult. The user must work with multiple files, such as widget
control files, sound hardware configuration files and sound control
files to create a sonification. Because of this complexity, Porsonify
has a steep learning curve.

Listen
The primary objective in the creation of Listen was to provide an
inexpensive, general purpose, flexible, interactive, adaptable and
portable sonification tool. Here we present a brief summary of
Listen. Further details are available in (Wilson, 1996).

Listen Toolkit

To provide incremental functionality, there are four basic programs
that comprise the toolkit. Listen 1 accepts command-line arguments
and uses the internal audio chip. Listen 2 uses the internal audio
chip and has a graphical user interface that permits more complex
mappings than Listen 1. Listen 3 uses a MIDI device and also has a
graphical user interface. Listen 4 is a module version of Listen 3
and is designed to be easily incorporated into an existing
visualization program:

Listen 1 and Listen 2: Listen 1 and Listen 2 allow the user to get
started using sonification minimum difficulty. No additional
hardware is required, since both use the internal audio chip. Listen
2 uses a graphical interface provided by XForms. The user can
interactively specify several different sound parameters using
menus, sliders and buttons. If XForms is not installed on the
system, the command-line program can be used. These basic
programs allow a potential user to get started quickly. If
sonification is not found to be useful, the investment of time and
resources has been minimal.
Listen 3: If sonification produces good results, the addition of a
MIDI device can be justified. Listen 3 uses a MIDI device and also
provides more complex mapping possibilities. In Listen 1 and
Listen 2, all mappings are linear. In Listen 3 a linear mapping is the
default, but it is possible to select a transfer function that is non-
linear. This feature allows the user to implement high-pass, low-
pass or boolean filters. Using a utility package, the user can
interactively define customized non-linear transfer functions. These
can then be loaded into the Listen program. It is also possible to
define a transfer function in which each parameter has its own
unique function.
Listen 4: Once sonification has proven its value and users have
gained experience with it, the addition of the module, Listen 4, to
existing visualization programs can be done with the assurance that
the investment of time will be rewarded. Integrating the module
into an existing program is quite simple and straightforward and is
described in detail in (Wilson, 1996).

As a unit, these four programs provide a structured starting point
for experimenting with sonification. The expectation is that, using
the basic ideas already implemented and with the experience
already gained, the user will create more complex, more

interesting, and more useful sonification tools as more is learned
about sonification in a particular environment.

The Modules

Listen is an object-oriented system written in C++ for the SGI
platform. Listen has five modules: an interface module, a control
module, a data manager module, a sound mapping module, and a
sound device module. The modularity of the design is the single
most important feature in achieving the project objectives.
Flexibility, adaptability, and extensibility would be impossible to
achieve without this modular, object-oriented design.

The interface module handles user input and provides feedback to
the user about the state of the program. The control module is the
intermediary between the interface and the other three basic
modules. It creates a clear separation between the basic modules
and the interface. For Listen 1, Listen 2 and Listen 3, the data
manager module reads the data from a file to learn essential
information about the data fields as well as minimum and
maximum values of each data field, and feeds this information to
the mapping module. When the module, Listen 4, is integrated into
a visualization program, the parent program manages the data. The
data manager can then be relieved of the responsibility for reading
data files, but must still keep track of the minimum and maximum
values of each data stream that is to be sonified. The sound
mapping module keeps track of how the data is to be mapped to the
sound parameters. It also keeps track of information about the
sound parameters themselves, including their maximum, minimum,
and default values. The sound parameters implemented are: pitch,
duration, volume, and location. In the MIDI implementation, a
timbre can be assigned to each data stream. The sound device
module is responsible for initializing the sound equipment and
causing it to create a particular sound.

Attributes of Listen

Listen is general. It allows the user to sonify any kind of data and
supports both a dataflow model and a probe model.

Listen is flexible. Any data stream can be mapped to any sound
parameter using any timbre. Subsets of each data stream can be

easily selected for sonification. Listen 3, with MIDI support, can
sonify any reasonable number of data streams in any combination.

Listen is intuitive. The graphical interface presents a display of all
of Listen's sonification capabilities simultaneously and is laid out
in such a way that setting up a sonification is self-explanatory.

Listen is interactive. Because all mapping controls are always
present on the graphical interface, setting up a sonification involves
little more than selecting a few menu items and manipulating some
sliders. Many aspects of the sonification, such as sound parameter
ranges and defaults, can be changed even while a sonification is
playing. If a sonification is uninteresting, it can be stopped at any
time.

Listen is adaptable. Because of the modular structure of the
program, it is very understandable, which makes it robust and easy
to modify.

Listen is extensible. New functionality can be added easily by
extending Listen's classes as needed.

Listen is portable. Only the sound device module and possibly the
user interface need to be changed in order to port Listen to another
platform. Listen can be implemented on easily available hardware.
MIDI devices are inexpensive and their use in multimedia ensures
that many platforms will support them.

Applications

Listen was easily incorporated into a system for visualizing
geometric uncertainty of surface interpolants (Lodha et al., 1995)
and a system for visualizing algorithmic uncertainty in fluid flow
(Lodha et al., 1996a). Sonification was found to be very useful and
the results are presented in (Lodha et al., 1996b).

Conclusions

Although there are a number of visualization systems available,
such as AVS, IBM Data Explorer, and SGI Explorer, many
scientists prefer to create their own customized visualization
systems tailored to the data they need to display. A sonification

toolkit that can be easily adapted to each specialized visualization
system can provide the ease of use and flexibility needed for
sonification to be accepted and used. Listen provides this adaptive
capability.

One way to determine how to create meaningful sonifications is to
experiment with creating them using real data. Often, effective
sonifications are data driven, with the nature of the data itself
suggesting new and more effective ways of using different sound
parameters and different ways of mapping the data to them. Listen
provides an interactive, flexible and portable environment to
encourage this essential experimentation.

References

Astheimer, P. (1993). Sonification tools to supplement dataflow
visualization. In Patrizia Palamidese, editor, Scientific
Visualization: Advanced Software Techniques. Ellis Horwood. pp.
15-36.

Grinstein, G.G. and Pickett, R.M. (1989). Exvis - an exploratory
visualization environment. Proceedings of Graphics Interface '89.

Gregory Kramer, (ed), (1994). Auditory Display: Sonification,
Audification, and Auditory Interfaces. Addison-Wesley.

Lodha, Suresh K., Pang, Alex T., Sheehan, Bob, and Wittenbrink,
Craig M. (1996a). Uflow: Visualizing uncertainty in fluid flow.
Proceedings of IEEE Visualization '96.

Lodha, Suresh K., Sheehan, Bob, Pang, Alex T., and Wittenbrink,
Craig M.(1995). Visualizing geometric uncertainty of surface
interpolants. Proceedings of Graphics Interface '96, pp. 238-245.

Lodha, Suresh K., Wilson, Catherine M., and Sheehan, Bob
(1996b). LISTEN: Sounding uncertainty visualization. Proceedings
of IEEE Visualization '96.

Madhyastha, Tara and Reed, Daniel (1995). Data sonification: Do
you hear what I see? IEEE Software, 12(2):85-90.

Minghim, R. and Forrest, A.R. (1995). An illustrated analysis of

sonification for scientific visualization. Proceedings of IEEE
Visualization '95, pp. 110--117.

Scaletti, Carla (1994). Sound synthesis algorithms for auditory data
representations. In Gregory Kramer, editor, Auditory Display:
Sonification, Audification, and Auditory Interfaces, pages 223--
251. Addison-Wesley.

Wilson, Catherine M. (1996). Listen: A data sonification toolkit.
M.S. Thesis, Department of Computer Science, University of
California, Santa Cruz.

Author Information
Catherine M. Wilson and Suresh K. Lodha
Computer Science
University of California, Santa Cruz
Santa Cruz, CA 95064 USA

